Table of Contents

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Purpose</td>
<td>4</td>
</tr>
<tr>
<td>College Requirements</td>
<td>4</td>
</tr>
<tr>
<td>Location</td>
<td>5</td>
</tr>
<tr>
<td>Administration</td>
<td>5</td>
</tr>
<tr>
<td>Admission</td>
<td>5</td>
</tr>
<tr>
<td>Majors</td>
<td>6</td>
</tr>
<tr>
<td>Minors</td>
<td>6</td>
</tr>
<tr>
<td>Special Programs</td>
<td>6</td>
</tr>
<tr>
<td>Honors Program</td>
<td>6</td>
</tr>
<tr>
<td>Modern Language Option</td>
<td>7</td>
</tr>
<tr>
<td>Study Abroad Program</td>
<td>7</td>
</tr>
<tr>
<td>TEACH Program</td>
<td>8</td>
</tr>
<tr>
<td>Academic Advising</td>
<td>9</td>
</tr>
<tr>
<td>Catalog Version</td>
<td>9</td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>10</td>
</tr>
<tr>
<td>Programs of Study</td>
<td>11</td>
</tr>
<tr>
<td>Allied Health Technologies</td>
<td>11</td>
</tr>
<tr>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>Faculty</td>
<td>11</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Studies Requirements</td>
<td>12</td>
</tr>
<tr>
<td>I. Concentration in Clinical Laboratory Sciences</td>
<td>13</td>
</tr>
<tr>
<td>II. Concentration in Nuclear Medicine Technology or Radiation Therapy</td>
<td>13</td>
</tr>
<tr>
<td>Courses</td>
<td>14</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>14</td>
</tr>
<tr>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>Faculty</td>
<td>16</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>17</td>
</tr>
<tr>
<td>Liberal Studies Requirements</td>
<td>17</td>
</tr>
<tr>
<td>I. General Concentration</td>
<td>18</td>
</tr>
<tr>
<td>II. Biotechnology Concentration</td>
<td>19</td>
</tr>
<tr>
<td>III. Pre-Health Concentration</td>
<td>20</td>
</tr>
<tr>
<td>IV. Neuroscience Concentration</td>
<td>20</td>
</tr>
<tr>
<td>V. Ecology-Evolution Concentration</td>
<td>21</td>
</tr>
<tr>
<td>VI. Cell & Molecular Biology Concentration</td>
<td>22</td>
</tr>
<tr>
<td>Minor Requirements</td>
<td>22</td>
</tr>
<tr>
<td>Special Programs</td>
<td>22</td>
</tr>
<tr>
<td>Courses</td>
<td>23</td>
</tr>
<tr>
<td>Chemistry</td>
<td>23</td>
</tr>
<tr>
<td>Introduction</td>
<td>24</td>
</tr>
<tr>
<td>Faculty</td>
<td>24</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>25</td>
</tr>
<tr>
<td>Liberal Studies Requirements</td>
<td>26</td>
</tr>
<tr>
<td>Common Core</td>
<td>27</td>
</tr>
<tr>
<td>B.S., Analytical/Physical Chemistry Track</td>
<td>28</td>
</tr>
<tr>
<td>B.S., Biochemical/Medicinal Chemistry Track</td>
<td>28</td>
</tr>
<tr>
<td>B.S., Standard Track</td>
<td>29</td>
</tr>
<tr>
<td>B.S., Synthetic Chemistry Track</td>
<td>29</td>
</tr>
</tbody>
</table>
General Information

Introduction

Purpose

The College of Science and Health provides students with innovative, science-based curricula with a strong liberal arts foundation. Our departments represent the natural sciences, mathematics, psychology, nursing, and health science, each of which is committed to providing the highest quality education. The College of Science and Health educates students with a strong Vincentian commitment to social justice and civic engagement. The college provides mathematical and scientific education/literacy for all undergraduate students within the University and participates in all aspects of DePaul’s distinctive Liberal Studies Program.

The College of Science and Health is dedicated to helping members of DePaul’s diverse student body reach their full academic and professional potential. The innovative curricula supported by the college encourages active participation in research, internships and other opportunities that further prepare students for successful careers and as life long learners. Faculty in the college embody the commitment to student academic and professional development through their quality instruction and by conducting meaningful, student accessible research.

College Requirements

MODERN LANGUAGE REQUIREMENTS

Students who intend to graduate with the Bachelor of Arts Degree will be required to demonstrate competence in a modern language equivalent to the proficiency attained from one year of college-level language study. Such competence may be demonstrated in one of several ways:

- completing the last course in the fourth-year high school sequence of any language
- completing the last course in the first-year college sequence of any language
- completing a college course beyond the first-year level in any language
- achieving a satisfactory score on any of the Modern Language placement examinations administered at DePaul
- achieving a satisfactory rating in a proficiency examination accepted by DePaul
- achieving a score of 3 or higher on the Advance Placement (AP) test for any language
- achieving a score of 5 or higher in the Language B assessment from a Standard or Higher Level International Baccalaureate (IB) program
- achieving a satisfactory score on the CLEP examination

For further information regarding satisfactory scores and possible credit from the DePaul placement, AP, CLEP, or IB examinations, please contact Student Records.

Students who complete an Inter-College Transfer (ICT) to the College of Science and Health will abide by the College of Science and Health Modern Language Requirement in place on the effective date of the ICT.

B.A. students who meet College requirements and wish to pursue further work in the language may elect the Modern Language Option of the Liberal Studies Program. While B.S. students are not required to demonstrate competency in a modern language, the Modern Language Option is available to them for language study at any level.
MAJOR DECLARATION REQUIREMENTS

All students in the College are required to declare a major field prior to beginning their junior year. After researching College programs, the student should declare a major field by visiting Campus Connection and using the Declarations and Inter-College Transfer tool. The student will then be assigned a faculty advisor in the department or program and should make an appointment to see that advisor at his or her earliest convenience.

To change major fields, or to declare a minor or concentration, the student must use the Declarations and Inter-College Transfer tool described above. However, for the purpose of exploring the possibility of changing a major field, the student should consult an academic advisor in the College or an academic advisor in the Office of Academic Advising Support.

Location

The College of Science and Health is located on the 4th floor of McGowan South on the Lincoln Park Campus.

Administration

JERRY W. CLELAND, Ph.D.
Dean

PHILLIP E. FUNK, Ph.D.
Associate Dean for External Relations

CHRISTOPHER B. KEYS, Ph.D.
Associate Dean for Research

RICHARD F. NIEDZIELA, Ph.D.
Associate Dean for Instruction

MARGARET E. SILLIKER, Ph.D.
Associate Dean for Graduate Studies

MICHAEL ROBERTS, M.B.A., M.Ed.
Assistant Dean for Academic Services

KAREN REINBOLD, M.B.A
Assistant Dean for Sponsored Programs and Finance

LUCINDA RAPP,
Executive Assistant

Admission
Candidates interested in admission to the College of Science and Health should direct all inquiries to the Office of Admission, DePaul University, 1 E. Jackson Boulevard, Chicago, Illinois, 60604, admission@depaul.edu, or (312) 362-8300.

For general information on the types of admission, see University Information, Admission.

Majors

Allied Health Technologies
Biological Sciences
Chemistry
Environmental Science and Studies
Health Sciences
Mathematical Sciences
Physics
Psychology

Minors

Biological Sciences
Chemistry
Environmental Science and Studies
Mathematical Sciences
Physics
Psychology

Special Programs

Honors Program

Students seeking a more challenging Liberal Studies experience should consider applying for the University Honors Program. This program, designed for the well prepared student, incorporates a structured series of specifically designed courses taken in sequence throughout the students four years at DePaul. Students who complete the University Honors Program will be exceptionally well prepared for graduate and professional study.
Modern Language Option

The Modern Language Option is available to all B.A. students who wish to study a modern language beyond the level necessary to meet the College's language requirement and to B.S. students who wish to study a Modern Language at any level. Students selecting the option may substitute a three-course language sequence for two domain courses and one open elective. Students may use the Modern Language option to reduce their requirements by one course among two of the following combinations of learning domains: Philosophical Inquiry or Religious Dimensions; Understanding the Past or Self, Society, and the Modern World; Arts and Literature or Scientific Inquiry (cannot substitute for the lab science requirement.) Students majoring in one modern language may use the Modern Language Option for study of a second language at the intermediate level or above. Please see your advisor for additional information about modern language course placement.

Study Abroad Program

A study abroad experience is an important part of a liberal education. The opportunity to live, study, and work with people from around the world provides students with a way to not only gain international competence and skills, but also helps them to more clearly understand their own identities and agency within a global context. Study Abroad programs are designed to emphasize social, political, historical, and cultural understanding through immersion in other cultures and societies. Short-term programs are topic-focused tours led by DePaul faculty exploring specific aspects and issues of a country or society. These programs typically last 2-3 weeks and are offered during breaks between terms. Students are encouraged to participate in the Study Abroad Program during their academic career. Study Abroad programs offered during most years include:

QUARTER, WINTER/SPRING SEMESTER, AND FULL YEAR PROGRAMS

ATHENS, GREECE (WINTER/SPRING OR FULL YEAR)
BEIJING, CHINA (WINTER/SPRING)
BONN, GERMANY (SPRING)
BUDAPEST, HUNGARY (AUTUMN)
DUBLIN, IRELAND (AUTUMN OR WINTER/SPRING)
HONG KONG, CHINA (WINTER/SPRING)
KRAKOW, POLAND (AUTUMN)
LEUVEN, BELGIUM (AUTUMN OR WINTER/SPRING)
LONDON, ENGLAND (WINTER/SPRING)
MADRID, SPAIN (AUTUMN)
MELBOURNE, AUSTRALIA (AUTUMN)
MERIDA, MEXICO (WINTER WITH OPTIONAL SPRING TERM EXTENSION)
OSAKA, JAPAN (FULL YEAR)
PARIS, FRANCE (SPRING OR FULL YEAR)
ROME, ITALY (AUTUMN OR FULL YEAR)
SHEFFIELD, ENGLAND (WINTER/SPRING OR FULL YEAR)

SHORT-TERM PROGRAMS

AMSTERDAM AND BRUSSELS: COMPARATIVE URBAN DEVELOPMENT IN (DECEMBER)
ARGENTINA AND CHILE: SOCIETIES IN TRANSITION (DECEMBER)
BAHAMAS: HISTORY AND ARCHAEOLOGY (DECEMBER)
BRAZIL (CTI): IT IN EMERGING COUNTRIES (DECEMBER)
COLOMBIA: CULTURAL IMPLICATIONS OF LEISURE (DECEMBER)
HAWAII: INDIGENOUS RIGHTS MOVEMENTS IN US TERRITORIAL POSSESSIONS (DECEMBER)
GHANA: HISTORY, CULTURE AND SPIRITUALITY (DECEMBER)
ISTANBUL: HISTORY, LITERATURE, ARCHITECTURE [SUMMER]
INDIA: GLOBAL/LOCAL FEMINISM, POST COLONIALISM, AND NARRATIVE (DECEMBER)
JAPAN (CTI): COMPUTER GAMING AND ANIMATION (DECEMBER)
JAPAN: MORAL ISSUES ACROSS CULTURES: THE ATOM BOMB DISCOURSE (DECEMBER)
EL SALVADOR: SERVICE AND JUSTICE (DECEMBER)
LONDON NURSING: NURSING IN THE BRITISH NATIONAL HEALTH SERVICE (DECEMBER)
MERIDA, MEXICO (SOE): EDUCATION IN MERIDA (DECEMBER)
MEXICO CITY (SOE: EDUCATION IN MEXICO CITY [SUMMER]
MOROCCO: TRANSLATING CULTURES: READING AND WRITING (DECEMBER)
NOGALES, MEXICO: ECONOMIC DEVELOPMENT AND SOCIAL JUSTICE IN NORTHERN MEXICO (DECEMBER)
PUERTO RICO: THE PUERTO RICAN NATION: A TRANSNATIONAL PERSPECTIVE [SUMMER]
RUSSIA: MEDIEVAL MOMENTS, IMPERIAL DAYS, AND WHITE NIGHTS IN NOVGOROD AND ST. PETERSBURG [SUMMER]

Courses taken through the Study Abroad Program may be used to fulfill international perspectives requirements, Liberal Studies domain requirements (including experiential learning), modern language requirements, or elective credits in various departments. Program fees ordinarily cover local transportation associated with course excursions, accommodations, and some meals. Short-term program fees also cover round-trip airfare. In addition students pay regular DePaul tuition for the credit received while abroad.

Additional information, application forms and deadlines, final costs, and program pre-requisites can be obtained at the Study Abroad Program Office, 990 Fullerton, Suite 1200, on the Lincoln Park Campus, online at http://studyabroad.depaul.edu/, or by calling (773) 325-7450.

College of Science and Health - Undergraduate Studies ▶ General Information ▶ Special Programs ▶ TEACH Program

TEACH Program

This program provides students the opportunity to complete in five years an undergraduate degree in a core science major and a Masters of Education degree with State of Illinois secondary education teaching certification in a content area related to their major. As a combined degree program of the College of Science and Health and the College of Education, the program is collaboratively developed, governed, and taught by
Students may apply to the Program during the spring of their junior year. They must complete the Junior Year Experiential Learning course TCH 320, *Exploring Teaching in an Urban High School*, and meet other application criteria prior to applying; these include completion of at least 16 hours at DePaul and a 3.0 GPA. During their Senior Year, students are required to complete a program capstone course and three 400-level courses that count toward both their undergraduate and graduate degrees. The Masters year comprises teacher-preparation coursework that culminates with student teaching during Spring quarter. Upon graduation and the fulfilling of State of Illinois Certification requirements (which may require some additional course work in the students major and related fields), students are eligible to be certified to teach Math, Biology, Chemistry, Environmental Science, or Physics at the 6th-12th grade levels.

A full description of the Program can be found on the College of Education website in the graduate course catalog. Students interested in the TEACH Program may consult with Dr. Richard Niedziela in the College of Science and Health or Dr. Christopher Worthman in the College of Education.

Academic Advising

Academic advising is a valued component of the student experience within the College of Science and Health. It provides students with the opportunity to develop an academic plan that best fits their interests, strengths, and academic and career goals under the guidance of a knowledgeable and supportive advisor.

Upon declaring a major field of study in the College, students are promptly assigned to a faculty academic advisor in the corresponding department or program. Students who have declared a major should meet regularly with their assigned faculty advisor within their program in order to complete their courses in a timely and efficient manner. Taking courses without consulting an advisor may lead to credits that will not satisfy College requirements for graduation. Those students who have not yet declared a major are highly encouraged to meet with either a staff advisor in the College's Office of Advising and Student Services or a staff advisor in the Office for Academic Advising Support prior to registering for classes each quarter.

Catalog Version

Please use the menu items to the left for current catalog navigation. Access archived catalogs by choosing the link to the right. Prior to Summer 2011, information can be found within the College of Liberal Arts and Sciences.
Course Descriptions

Please visit Campus Connection at https://campusconnect.depaul.edu for current course information. If you do not have a password for Campus Connection you may log on as a guest. Once you are on Campus Connection please select Course Descriptions followed by the department.
Programs of Study

Allied Health Technologies
Biological Sciences
Chemistry
Environmental Science and Studies
Health Sciences
Mathematical Sciences
Physics
Psychology

Allied Health Technologies

Introduction

Administered through the Department of Biological Sciences, the Allied Health Technologies program offers three concentrations. The Clinical Laboratory Science (CLS) concentration is nearly identical to the standard Biological Sciences concentration, except that Biology 210, 310 and 370 are also required. The student takes 12 courses in the Biological Sciences, two years of Chemistry, a year of Physics, a year of Calculus, and a course in Statistics. Upon completing the requirements for the baccalaureate, the student spends one year in an internship at a hospital associated with DePaul University (currently Evanston Hospital). Upon completion of a clinical laboratory science program, graduates are eligible for national certification as a clinical laboratory scientist, CLS, by exams offered by the National Credentialing Agency for Laboratory Personnel (NCA).

The two other concentrations offered through the program are Nuclear Medicine Technology, and Radiation Therapy. These two concentrations are offered as 3+1 programs in which the student spends three years at DePaul and one year at an internship at Northwestern Memorial Hospital. Students interested in the technological aspects of biosciences may also consider the Biotechnology concentration in the Department of Biological Sciences program.

Faculty

TALITHA RAJAH, Ph.D.,
Assistant Professor
Coordinator and Allied Health Advisor
Department of Biological Sciences

MICHELLE JOHNSON, M.Ed.,
Academic Advisor
Department of Biological Sciences

JOHN V. DEAN, Ph.D.,
Professor
Chair, Department of Biological Sciences
Major Requirements

CONCENTRATIONS

Allied Health Technologies students must declare one Allied Health Technologies concentration and are limited to only declaring one concentration.

Liberal Studies Requirements

I. Concentration in Clinical Laboratory Sciences
II. Concentration in Nuclear Medicine Technology or Radiation Therapy

SEQUENCING

Since programs in the Biological Sciences tend to be structured, it is useful for students to take courses in sequence. Students should begin with the General Biology and Chemistry sequences. These are prerequisite to Cell Biology, Genetics, and Organic Chemistry, which should preferably be taken in the sophomore year. Since calculus is required, students should also begin their study of mathematics as soon as possible, preferably prior to their junior year, so that they can be adequately prepared for the General Physics sequence, best taken in the junior year. Because of this highly structured sequence, students are strongly encouraged to work with their Departmental advisor in order to plan their course schedules and plan alternatives if necessary. Such planning is particularly important for transfer students, as the sequence presented above is highly recommended and most likely to be completed in a timely fashion.

The predominance of chemistry and biology sequences in the freshman and sophomore years generally dictates that, with the exception of the Liberal Studies Core courses, the majority of the Liberal Studies courses may be postponed until the junior and senior years. Students therefore tend to take fewer Liberal Studies courses in the first two years, concentrating instead on major field requirements, which are prerequisites to upper division courses. For the Clinical Lab Sciences concentration, students will complete their post-graduate (fifth year) internship at an associated hospital. For the Nuclear Medicine Technology and Radiation Therapy concentrations, students apply to take the internship during their third year.

Liberal Studies Requirements

<table>
<thead>
<tr>
<th>First Year Program</th>
<th>Second Year Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago Quarter</td>
<td>LSP 200</td>
</tr>
<tr>
<td>Focal Point</td>
<td>LSP 110 or LSP 111</td>
</tr>
<tr>
<td>Writing</td>
<td>LSP 112</td>
</tr>
<tr>
<td>Quantitative Reasoning & Technological Literacy</td>
<td>WRD 103* and WRD 104*</td>
</tr>
<tr>
<td>Liberal Studies Core courses</td>
<td></td>
</tr>
<tr>
<td>Sophomore Year</td>
<td></td>
</tr>
<tr>
<td>Multiculturalism in the US</td>
<td>Required</td>
</tr>
<tr>
<td>Junior Year</td>
<td></td>
</tr>
<tr>
<td>Experiential Learning</td>
<td></td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
</tr>
<tr>
<td>Capstone</td>
<td>Required*</td>
</tr>
</tbody>
</table>
Learning Domains

<table>
<thead>
<tr>
<th>Learning Domain</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Literature (AL)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Philosophical Inquiry (PI)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Scientific Inquiry (SI)</td>
<td>Not Required</td>
</tr>
<tr>
<td>Self, Society and the Modern World (SSMW)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Religious Dimensions (RD)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Understanding the Past (UP)</td>
<td>2 Courses Required</td>
</tr>
</tbody>
</table>

Note: * Students must earn a C- or better in this course.

Note: Courses offered in the student's primary major cannot be taken to fulfill LSP Domain requirements. If students double major, LSP Domain courses may double count for both LSP credit and the second major. Students who choose to take an experiential learning course offered by the major may count it either as a general elective or the JYEL requirement.

In meeting learning domain requirements, no more than one course that is outside the students major and is cross-listed with a course within the students major, can be applied to count for LSP domain credit. This policy would apply only to those students in pursuit of a BA or BS degree, and not to those who are double majors or earning BFA or BM degrees.

I. Concentration in Clinical Laboratory Sciences

Biological Sciences Core: 191 General Biology I for Science Majors; 192 General Biology II for Science Majors; 193 General Biology III for Science Majors; 210 Microbiology; 215 Ecology or 235 Evolution; 250 Cell Biology; 260 Genetics; 310 Vertebrate Physiology; 370 Immunobiology; three additional Biology courses, one of which must include a laboratory; and one statistics course: Biology: 206 Biometry (or Environmental Science: 260 Environmental Data Analysis). Biology courses that fulfill the Scientific Inquiry Domain requirements, other than the General Biology sequence, do not generate credit toward the major.

Allied Field Courses:
Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Chemistry: 130/131 General Chemistry I Lecture/Lab; 132/133 General Chemistry II Lecture/Lab; 134/135 General Chemistry III Lecture/Lab; 230/231 Organic Chemistry I Lecture/Lab; 232/233 Organic Chemistry II Lecture/Lab; 234/235 Organic Chemistry III Lecture/Lab. (First-year chemistry courses should be taken simultaneously with Biology 191, 192, and 193.)

Physics: 150 General Physics I; 151 General Physics II; and 152 General Physics III. (Students may take any comparable sequences of Physics courses designed for science majors).

Mathematics: Mathematics: 150 Calculus I; 151 Calculus II; 152 Calculus III (or Mathematics 147/148/149; or Mathematics 160/161/162; or Mathematics 170/171/172.).

Students may be advised on the basis of their performance on the Mathematics Diagnostic test to take one or more pre-calculus courses.

II. Concentration in Nuclear Medicine Technology or Radiation Therapy
In addition to the Clinical Laboratory Sciences (CLS) concentration, the Allied Health Technologies program has two concentrations that are offered in conjunction with Northwestern Memorial Hospital (NMH): Nuclear Medicine Technology and Radiation Therapy. These programs require three years of study at DePaul University and one year of internship study and courses at Northwestern Memorial Hospital. The three years of study at DePaul include 12 credits each of General Biology, General Chemistry and Organic Chemistry, and 8 credits each of Physics and Calculus. These concentrations will also include 72 credits of the required Liberal Studies Courses (The Experiential Learning course is taken at Northwestern Memorial Hospital as part of a clinical practicum). One of the Liberal Studies Domain courses should be in speech or communications, and one should be in some field of ethics, preferably bioethics. Students interested in either of these concentrations should contact a biology allied health advisor for additional information guidelines.

Biological Sciences Core: 191 General Biology I for Science Majors; 192 General Biology II for Science Majors; 193 General Biology III for Science Majors; 201 Mammalian Anatomy; 215 Ecology; 250 Cell Biology; 260 Genetics; 310 Vertebrate Physiology; and one statistics course: Biology: 206 Biometry (or Environmental Science: 260 Environmental Data Analysis).

Allied Field Courses:

Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Chemistry: 130/131 General Chemistry I Lecture/Lab; 132/133 General Chemistry II Lecture/Lab; 134/135 General Chemistry III Lecture/Lab; 230/231 Organic Chemistry I; 232/233 Organic Chemistry II; and 234/235 Organic Chemistry III (First-year chemistry courses should be taken simultaneously with Biology 191, 192, and 193).

Physics: 150 General Physics I; 151 General Physics II.

Mathematics: Mathematics 150 Calculus I; Mathematics 151 Calculus II; (or Math 147/148, or Math 160/161, or Math 170/171)

Students may be advised on the basis of their performance on the Mathematics Diagnostic test to take one or more pre-calculus courses.

After the three year program of study at DePaul the student will apply to Northwestern Hospital to take approximately 42 quarter hours of core study and practicum at the Hospital (4 credits count towards the Experiential Learning requirement), along with taking a 4 quarter Capstone course at DePaul. Students should be aware that entrance into the fourth year at NMH is on a competitive basis.

Courses

Please visit Campus Connection at https://campusconnect.depaul.edu for current course information. If you do not have a password for Campus Connection you may log on as a guest. Once you are on Campus Connection please select Course Descriptions followed by the department.

For information on the courses and program requirements for the Nuclear Medicine Technology and Radiation Therapy programs at Northwestern Memorial Hospital please see:

Nuclear Medicine

Radiation Therapy

Biological Sciences
Introduction

The Department of Biological Sciences provides programs for both biology majors and non-majors. For its majors, the department offers six different concentrations, briefly described below. These concentrations provide a core program consisting of six to seven lecture/laboratory courses. Beyond the core program, the concentrations allow the students to have a moderate degree of specialization in any one of several areas. It also provides a number of opportunities for learning outside the classroom, including a program of seminars, internships and opportunities for research with, or under the direction of, a member of the faculty.

Typically students enter the program under the General Concentration, and choose their concentration of interest after they have completed the first year of General Biology. The General concentration is also available to all Biology majors who want an overall degree in Biology without a specific concentration, or students who started off in a different concentration and changed their mind about whether they want to continue in it. The General Concentration can also provide a means by which students can select electives in their own area of interest.

Students who intend to enter medicine or a wide range of other health-related professions such as dentistry, veterinary medicine, physical therapy, pharmacy, or optometry may find it most appropriate to select the Pre-Health Concentration. The Pre-health science curriculum includes core classes that will prepare students for application to health profession training after graduation from DePaul. It will also expose students to the breadth of fields within biology while allowing them to select from courses with a human biology focus. In addition, the department is working with other science departments at DePaul to provide health advising, and has a specialized pre-medical advisor.

The Neuroscience concentration at DePaul will provide students majoring in either Biology or Psychology the opportunity to design a curriculum that will prepare them for a career or future study in Neuroscience. In addition to a core curriculum with the major the concentration will also provide recommendations for courses within the Liberal Studies learning domains that relate to Neuroscience.

For students more interested in the fields of ecology or evolution, the department has a designated Ecology-Evolution concentration, allowing a degree of specialization in these disciplines building on the first year sequence. Courses focus on understanding the relationships between organisms and the natural environment as well as how those relationships change or have changed over time. This concentration is appropriate for students with an interest in ecology, evolution, animal behavior, developmental biology, paleontology or organismal biology.

The Cell and Molecular Biology concentration curriculum is designed for those students who wish to focus on the structure and function of living organisms at the cellular and molecular level. It is designed to expose biology students to recent advances in the field of Cell and Molecular Biology and acquire relevant technical skills in the field.

Students interested in the more technological side of modern biosciences can follow the Biotechnology concentration. This concentration allows students to pursue a more focused course of study in those areas most relevant to Biotechnology. Students in the Biotechnology option take a core course in Principles of Biotechnology, as well as courses in Biochemistry, Molecular Biology, Microbiology, and Immunobiology. This concentration may be particularly suited for students whose interests include areas such as microbiology, bioethics, agriculture, environmental biology, forensic sciences, health, and medicine.

In addition, the College of Education and the Department of Biological Sciences offer a program that prepares students for a career in teaching biology at the secondary school level. The Biology/Education concentration culminates in certification by the State of Illinois. The departmental course requirements in the Standard Biological Sciences concentration and in the Biology/Education concentration are listed below.

The Department of Biological Sciences also administers a Clinical Laboratory Sciences (Medical Technology) concentration within the Allied Health Technology program similar to the Standard Biological Sciences concentration. The department provides specialized academic advising for students in this program. Upon completing the requirements for the baccalaureate, the student enrolls in a hospital associated with DePaul for a year of specialized study. This program is available as a concentration through the Allied Health Technologies program. The department also administers concentrations in Nuclear Medicine Technology and Radiation Therapy through the Allied Health Technologies program. These two concentrations are offered as
3+1 programs in which the student spends three years at DePaul and one year at an internship at Northwestern Memorial Hospital.

Additionally, the department provides courses for the life science components of non-biology majors (e.g. nursing, physical education, chemistry, environmental science, psychology) as well as prerequisite courses for those who intend to later apply for entrance elsewhere into specialized programs such as Physical Therapy, Occupational Therapy, Pharmacy, and Dentistry. The Department of Biological Sciences provides those students with both academic and career counseling during their years at DePaul University.

Faculty

WINDSOR E. AGUIRRE, Ph.D.,
Assistant Professor
Stony Brook University

RIMA BARKAUSKAS, M.S.,
Asst. Laboratorian
DePaul University

JOANNA S. BROOKE, Ph.D.,
Associate Professor
University of Western Ontario

JASON BYSTRIANSKY, Ph.D.,
Assistant Professor
University of Guelph

STANLEY A. COHN, Ph.D.,
Professor
University of Colorado

JOHN V. DEAN, Ph.D.,
Professor and Departmental Chair
University of Illinois

PHILLIP E. FUNK, Ph.D.,
Associate Professor
Loyola University Chicago

WILLIAM D. GILLILAND, Ph.D.,
Assistant Professor
University of California, Davis

JINGJING L. KIPP, Ph.D.,
Assistant Professor
University of Illinois

DOROTHY A. KOZLOWSKI, Ph.D.,
Associate Professor
University of Texas at Austin

JALENE M. LAMONTAGNE, Ph.D.,
Assistant Professor
University of Alberta

ELIZABETH LECLAIR, Ph.D.,
Associate Professor
University of Chicago

CAROLYN MARTINEAU, Ph.D.,
Laboratorian
Harvard Medical School

JAMES F. MASKEN, Ph.D.,
Adjunct Professor
Colorado State University

DENNIS A. MERITT, JR., Ph.D.,
Adjunct Professor
University of Illinois
Major Requirements

Liberal Studies Requirements
I. General Concentration
II. Biotechnology Concentration
III. Pre-Health Concentration
IV. Neuroscience Concentration
V. Ecology-Evolution Concentration
VI. Cell & Molecular Biology Concentration

SEQUENCING

Since programs in the Biological Sciences tend to be structured, it is useful for students to take courses in sequence. Students should begin with the General Biology and General Chemistry sequences. These are prerequisite to higher level requirements such as Ecology, Cell Biology, Genetics, and Organic Chemistry, which should preferably be taken in the sophomore year. Since calculus is required for the degree, students should also begin their study of mathematics as soon as possible, preferably prior to their junior year, so that they can be adequately prepared for the General Physics sequence, best taken in the junior year. Because of this highly structured sequence, students are strongly encouraged to work with their Departmental advisor in order to plan their course schedules and plan alternatives if necessary. Such planning is particularly important for transfer students, as the sequence presented above is highly recommended and most likely to be completed in a timely fashion.

The predominance of chemistry and biology course sequences required in the freshman and sophomore years generally dictates that, with the exception of the Liberal Studies Core courses, the majority of the Liberal Studies courses may be postponed until the junior and senior years. Students may therefore be taking fewer Liberal Studies courses in the first two years than many other programs, concentrating instead on major field requirements, which are prerequisites to upper division courses.

CONCENTRATION

Biological Sciences students must declare one Biological Sciences concentration and are limited to only declaring one concentration.

Liberal Studies Requirements
First Year Program

<table>
<thead>
<tr>
<th>Chicago Quarter</th>
<th>LSP 110 or LSP 111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal Point</td>
<td>LSP 112</td>
</tr>
<tr>
<td>Writing</td>
<td>WRD 103* and WRD 104*</td>
</tr>
<tr>
<td>Quantitative Reasoning & Technological Literacy</td>
<td>Not Required</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Multiculturalism in the US</th>
<th>LSP 200</th>
</tr>
</thead>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Experiential Learning</th>
<th>Required</th>
</tr>
</thead>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Capstone</th>
<th>Required*</th>
</tr>
</thead>
</table>

Learning Domains

<table>
<thead>
<tr>
<th>Arts and Literature (AL)</th>
<th>3 Courses Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philosophical Inquiry (PI)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Scientific Inquiry (SI)</td>
<td>Not Required</td>
</tr>
<tr>
<td>Self, Society and the Modern World (SSMW)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Religious Dimensions (RD)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Understanding the Past (UP)</td>
<td>2 Courses Required</td>
</tr>
</tbody>
</table>

Note: Students must earn a C- or better in this course.

Note: Courses offered in the student's primary major cannot be taken to fulfill LSP Domain requirements. If students double major, LSP Domain courses may double count for both LSP credit and the second major. Students who choose to take an experiential learning course offered by the major may count it either as a general elective or the JYEL requirement.

In meeting learning domain requirements, no more than one course that is outside the students major and is cross-listed with a course within the students major, can be applied to count for LSP domain credit. This policy would apply only to those students in pursuit of a BA or BS degree, and not to those who are double majors or earning BFA or BM degrees.

I. General Concentration

Biological Sciences Core:
I. 191 General Biology I for Science Majors; 192 General Biology II for Science Majors; 193 General Biology III for Science Majors; 260 Genetics.
II. Students must also take three additional courses from the following list: 210 Microbiology; 215 Ecology; 235 Evolution; 250 Cell Biology; 309 Plant Physiology; 310 Vertebrate Physiology; 360 Molecular Biology.
III. Students must also take five additional majors-level Biology courses (not including 206 Biostatistics). Biology courses that fulfill the Scientific Inquiry Domain requirements, other than the General Biology sequence, do not generate credit toward the major or minor.
IV. Students must take one statistics course: Biology 206 Biostatistics.

Allied Field Courses:
Allied Field courses are required for completion of a major’s requirements, but which are offered by departments other than the major department.

Chemistry:
130/131 General Chemistry I (Lecture and Lab); 132/133 General Chemistry II (Lecture and Lab); 134/135 General Chemistry III (Lecture and Lab); 230/231 Organic Chemistry I (Lecture and Lab); 232/233 Organic
Chemistry II (Lecture and Lab) ; 234/235 Organic Chemistry III (Lecture and Lab) . (Students are typically expected to take the first year chemistry courses simultaneously with Biology 191, 192, and 193).

Physics :
150 General Physics I; 151 General Physics II; and 152 General Physics III. (Students may substitute comparable sequences of Physics courses designed for science majors).

Mathematics :
Mathematics: 150 Calculus I; 151 Calculus II; and 152 Calculus III (or Math 147/148/149, or Math 160/161/162, or Math 170/171/172). Students may be advised on the basis of their performance on the Mathematics Diagnostic Test to take one or more pre-calculus courses.

II. Biotechnology Concentration

Biological Sciences Core:
I. 191 General Biology I for Science Majors; 192 General Biology II for Science Majors; 193 General Biology III for Science Majors; 210 Microbiology; 220 Principles of Biotechnology; 250 Cell Biology; 260 Genetics; 360 Molecular Biology.

II. Students must also take two courses from the following list: 209 Plant Biology; 309 Plant Physiology; 310 Vertebrate Physiology; 320 Microbial Ecology; 321 Molecular Methods in Ecology and Evolution; 330 Developmental Biology; 347 Topics in Medical Bacteriology; 348 Biology of Infection; 355 Genetic Toxicology; 361 Topics in Molecular Biology; 365 Principles of Toxicology; 370 Immunobiology; 375 Introduction to Pharmacology; or Chemistry: CHE 340/341 Biochemistry I with Lab or 342/343 Biochemistry II with lab.

III. Students must also take two additional majors-level Biology courses (other than Biology 206 Biostatistics).

IV. Students must take one statistics course: Biology 206 Biostatistics.

At least two courses from sections II. and III. above must have lab components. Biology courses other than the General Biology sequence that have any Scientific Inquiry domain designation do not generate credit toward the major or minor.

Allied Field Courses:
Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Chemistry :
130/131 General Chemistry I (Lecture and Lab); 132/133 General Chemistry II (Lecture and Lab); 134/135 General Chemistry III (Lecture and Lab); 230/231 Organic Chemistry I (Lecture and Lab); 232/233 Organic Chemistry II (Lecture and Lab); 234/235 Organic Chemistry III (Lecture and Lab). (Students are typically expected to take the first year chemistry courses simultaneously with Biology 191, 192, and 193).

Physics :
150 General Physics I; 151 General Physics II; and 152 General Physics III. (Students may substitute comparable sequences of Physics courses designed for science majors).

Mathematics :
Mathematics: 150 Calculus I; 151 Calculus II; and 152 Calculus III (or Math 147/148/149, or Math 160/161/162, or Math 170/171/172). Students may be advised on the basis of their performance on the Mathematics Diagnostic Test to take one or more pre-calculus courses.
III. Pre-Health Concentration

Biological Sciences Core:
I. 191 General Biology I for Science Majors; 192 General Biology II for Science Majors; 193 General Biology III for Science Majors; 260 Genetics; 210 Microbiology; 250 Cell Biology; 310 Vertebrate Physiology.

II. Students must also take three courses from the following list (1 must be a lab course): 201 Mammalian Anatomy; 220 Principles of Biotechnology; 230 Epidemiology; 311 Histology; 330 Developmental Biology; 339 Cellular Neurobiology; 340 Systems Neurobiology; 341 Topics in Neurobiology; 347 Topics in Medical Bacteriology; 348 Biology of Infection; 355 Genetic Toxicology; 360 Molecular Biology; 361 Topics in Molecular Biology; 365 Principles of Toxicology; 370 Immunobiology; 375 Introduction to Pharmacology; 380 Cancer Biology; 385 Mammalian Reproduction; 386 Introduction to Endocrinology; or Chemistry: 340/341 Biochemistry I with lab or 342/343 Biochemistry II with lab. Students can request permission from the department to have a 390 Special Topics class count for one of the requirements if appropriate.

III. Students must also take two additional majors-level Biology courses (other than Biology 206 Biostatistics).

IV. Students must take one statistics course: Biology 206 Biostatistics.

At least two courses from sections II. and III. above must have lab components. Biology courses other than the General Biology sequence that have any Scientific Inquiry domain designation do not generate credit toward the major or minor.

Allied Field Courses:
Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Chemistry:
130/131 General Chemistry I (Lecture and Lab); 132/133 General Chemistry II (Lecture and Lab); 134/135 General Chemistry III (Lecture and Lab); 230/231 Organic Chemistry I (Lecture and Lab); 232/233 Organic Chemistry II (Lecture and Lab); 234/235 Organic Chemistry III (Lecture and Lab). (Students are typically expected to take the first year chemistry courses simultaneously with Biology 191, 192, and 193).

Physics:
150 General Physics I; 151 General Physics II; and 152 General Physics III. (Students may substitute comparable sequences of Physics courses designed for science majors).

Mathematics:
Mathematics: 150 Calculus I; 151 Calculus II; and 152 Calculus III (or Math 147/148/149, or Math 160/161/162, or Math 170/171/172). Students may be advised on the basis of their performance on the Mathematics Diagnostic Test to take one or more pre-calculus courses.

IV. Neuroscience Concentration

Biological Sciences Core:
I. 191 General Biology I for Science Majors; 192 General Biology II for Science Majors; 193 General Biology III for Science Majors; 250 Cell Biology; 260 Genetics; 310 Vertebrate Physiology; 339 Cellular Neurobiology; 340 Systems Neurobiology.

II. Students must also take one course from the following list: 341 Topics in Neurobiology; 360 Molecular Biology; 375 Introduction to Pharmacology; or 386 Introduction to Endocrinology.

III. Students must also take three additional majors-level Biology courses (other than 206 Biostatistics), one of which must be a lab course. Biology courses other than the General Biology sequence that have any Scientific Inquiry domain designation do not generate credit toward the major or minor.

IV. Students must take one statistics course: Biology 206 Biostatistics.

Allied Field Courses:
Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.
Chemistry:
130/131 General Chemistry I (Lecture and Lab); 132/133 General Chemistry II (Lecture and Lab); 134/135 General Chemistry III (Lecture and Lab); 230/231 Organic Chemistry I (Lecture and Lab); 232/233 Organic Chemistry II (Lecture and Lab); 234/235 Organic Chemistry III (Lecture and Lab). (Students are typically expected to take the first year chemistry courses simultaneously with Biology 191, 192, and 193).

Physics:
150 General Physics I; 151 General Physics II; and 152 General Physics III. (Students may substitute comparable sequences of Physics courses designed for science majors).

Mathematics:
Mathematics: 150 Calculus I; 151 Calculus II; and 152 Calculus III (or Math 147/148/149, or Math 160/161/162, or Math 170/171/172). Students may be advised on the basis of their performance on the Mathematics Diagnostic Test to take one or more pre-calculus courses.

V. Ecology-Evolution Concentration

Biological Sciences Core:
I. 191 General Biology I for Science Majors; 192 General Biology II for Science Majors; 193 General Biology III for Science Majors; 215 Ecology; 235 Evolution; and 260 Genetics.
II. Any one 300-level advanced topics course.
III. Students must also take three courses from the following list: 209 Plant Biology; 210 Microbiology; 250 Cell Biology; 270 Comparative Vertebrate Anatomy; 301 Animal Behavior; 304 Introduction to Field Studies; 309 Plant Physiology; 310 Vertebrate Physiology; 316 Phyiology; 317 Aquatic Biology; 318 Field Studies in Marine and Estuarine Biology; 320 Microbial Ecology; 321 Molecular Methods in Ecology and Evolution; 325 Paleobiology; 330 Developmental Biology; 333 Mycology; 335 Concepts in Evolution; 345 Topics in Paleobiology; 350 Animal Adaptations; 352 Advanced Comparative Physiology; 386 Introduction to Endocrinology. Students can request permission from the department to have a 390 Special Topics class count for one of the requirements if appropriate.
IV. Students must also take two additional majors-level Biology courses (other than 206 Biostatistics). Biology courses other than the General Biology sequence that have any Scientific Inquiry domain designation do not generate credit toward the major or minor.
V. Students must take one statistics course: Biology 206 Biostatistics.

Allied Field Courses:
Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Chemistry:
130/131 General Chemistry I (Lecture and Lab); 132/133 General Chemistry II (Lecture and Lab); 134/135 General Chemistry III (Lecture and Lab); 230/231 Organic Chemistry I (Lecture and Lab); 232/233 Organic Chemistry II (Lecture and Lab); 234/235 Organic Chemistry III (Lecture and Lab). (Students are typically expected to take the first year chemistry courses simultaneously with Biology 191, 192, and 193).

Physics:
150 General Physics I; 151 General Physics II; and 152 General Physics III. (Students may substitute comparable sequences of Physics courses designed for science majors).

Mathematics:
Mathematics: 150 Calculus I; 151 Calculus II; and 152 Calculus III (or Math 147/148/149, or Math 160/161/162, or Math 170/171/172). Students may be advised on the basis of their performance on the Mathematics Diagnostic Test to take one or more pre-calculus courses.
VI. Cell & Molecular Biology Concentration

Biological Sciences Core:
I. 191 General Biology I for Science Majors; 192 General Biology II for Science Majors; 193 General Biology III for Science Majors; 260 Genetics; 210 Microbiology; 250 Cell Biology; 360 Molecular Biology, and any one advanced Topics course.
II. Students must also take two courses from the following list, one of which must be a lab course: 309 Plant Physiology; 315 Topics in Ecology; 330 Developmental Biology; 339 Cellular Neurobiology; 341 Topics in Neurobiology; 345 Topics in Paleobiology; 347 Topics in Medical Bacteriology; 348 Biology of Infection; 354 Topics in Cell Motility; 355 Genetic Toxicology; 361 Topics in Molecular Biology; 362 Bioinformatics for Bench Scientists; 365 Principles of Toxicology; 370 Immunobiology; 375 Introduction to Pharmacology; 380 Cancer Biology; 386 Introduction to Endocrinology; or Chemistry: 340 Biochemistry I with 341 Biochemistry Lab. Students can request permission from the department to have a 390 Special Topics class count for one of the requirements if appropriate.
III. Students must also take two additional majors-level Biology courses (other than 206 Biostatistics), one of which must be a lab course. Biology courses other than the General Biology sequence that have any Scientific Inquiry domain designation do not generate credit toward the major or minor.
IV. Students must take one statistics course: Biology 206 Biostatistics.

Allied Field Courses:
Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Chemistry:
130/131 General Chemistry I (Lecture and Lab); 132/133 General Chemistry II (Lecture and Lab); 134/135 General Chemistry III (Lecture and Lab); 230/231 Organic Chemistry I (Lecture and Lab); 232/233 Organic Chemistry II (Lecture and Lab); 234/235 Organic Chemistry III (Lecture and Lab). (Students are typically expected to take the first year chemistry courses simultaneously with Biology 191, 192, and 193).

Physics:
150 General Physics I; 151 General Physics II; and 152 General Physics III. (Students may substitute comparable sequences of Physics courses designed for science majors).

Mathematics:
Mathematics: 150 Calculus I; 151 Calculus II; and 152 Calculus III (or Math 147/148/149, or Math 160/161/162, or Math 170/171/172). Students may be advised on the basis of their performance on the Mathematics Diagnostic Test to take one or more pre-calculus courses.

Minor Requirements
A student wishing to obtain a minor in Biology must take six courses designed primarily for the major, including Biology 191, 192, and 193. Three additional courses (generally lab-based) designed for the major must be taken. If desired, these courses can be recommended by a departmental advisor on the basis of the students interests.
CLINICAL LABORATORY SCIENCE (MEDICAL TECHNOLOGY)
A student wishing to enter a career in Clinical Laboratory Science takes a program of study almost identical to
the major in Biological Sciences, except that Biology 210, 310 and 370 are also required. Upon completion of
the requirements for the baccalaureate, the student enters one year of internship (separate tuition required) in
a hospital associated with DePaul University. The Clinical Laboratory Science option is one of three
concentrations in the Allied Health Technologies Program, which also includes programs for Nuclear Medicine
Technology and Radiation Therapy (see separate listing of the Allied Health Technologies Program for details).

MASTER OF SCIENCE DEGREE PROGRAM
Certain graduate level courses, including 401 (Independent Study) are open to qualified advanced
undergraduate students with the approval of the chair of the department. See the Graduate School Bulletin for
course offerings. Students planning to complete a graduate program at DePaul University should inquire of
their academic advisor how they, as juniors or seniors may initiate studies in the Graduate School which
become applicable toward our masters degree (see below).

COMBINED BACHELORS AND MASTERS DEGREE IN BIOLOGY
The Department of Biological Sciences offers a special option to students with a potential for graduate study
and an interest in pursuing a masters degree at DePaul. Following consultation with the students advisor, and
with prior permission from the department, a student may enter the Graduate Program prior to completion of
the bachelors degree. The student may take graduate level courses as an undergraduate and have up to three
of them count towards the undergraduate degree as well. These students will earn a bachelors degree during
their fourth year.

TEACH PROGRAM
This program provides students the opportunity to complete in as few as five years an undergraduate Biology
major and a Masters of Education degree with State of Illinois secondary teaching certification in Biology. As
a combined degree program of the College of Science and Health and the College of Education, the program is
collaboratively developed, governed, and taught by faculty from both units.

Students may apply to the Program during the spring of their junior year. They must complete the Junior Year
Experiential Course TCH 320, Exploring Teaching in an Urban High School, and meet other application criteria
prior to applying; these include completion of at least 16 quarter credit hours at DePaul and a 3.0 GPA. During
their senior year, students are required to complete a Program capstone course and three 400-level courses
that count toward both their undergraduate and graduate degrees. The Masters year comprises teacher-
preparation coursework that culminates with student teaching during Spring quarter. Upon graduation and the
fulfilling of State of Illinois Certification requirements (which may require some additional course work in the
students major and related fields), students are eligible to be certified to teach Biology at the 6 th -12 th grade
levels.

A full description of the Program can be found on the College of Education website in the graduate course
catalog. Students interested in the Program should consult with the designated TEACH Program advisor in
their home department.

Courses
Please visit Campus Connection at https://campusconnect.depaul.edu for current course information. If you do not have a
password for Campus Connection you may log on as a guest. Once you are on Campus Connection please select Course
Descriptions followed by the department.

Chemistry
Introduction

The Department of Chemistry has several fundamental responsibilities. They are (a) to train students to understand, to criticize meaningfully, and to carry out scientific investigations, (b) to provide instruction and laboratory experience for those who wish to make chemistry their livelihood and/or pursue advanced study in chemistry, (c) to provide instruction and laboratory experience for those who wish to use chemistry as a background in an allied profession, and (d) to provide students not majoring in chemistry with up-to-date instruction in the principles of chemistry and methods of scientific inquiry. In meeting these responsibilities, the department offers four tracks of study, each of which lead to a Bachelor of Science that is certified by the American Chemical Society, the department's accrediting body. The tracks include Standard Chemistry, Analytical and Physical Chemistry, Biochemistry and Medicinal Chemistry, and Synthetic Chemistry. The department also offers a Bachelor of Arts degree. This option allows students to get a firm educational foundation in chemistry along with the ability to develop specialization in another field not necessarily related to chemistry.

In addition to its baccalaureate degrees, the department offers several combined degree programs. Students may pursue a degree in chemistry and chemical engineering through a joint program with the Illinois Institute of Technology. The department has teamed with the School of Education to develop a combined B.S./M.Ed. program that allows students to earn an undergraduate degree in chemistry and a graduate degree in secondary education. Finally, the department hosts its own B.S./M.S. program. This option allows students to earn a B.S. and M.S. in chemistry in as few as five years.

DEPARTMENTAL PROGRAM REQUIREMENTS

The following enrollment-related policies are fully enforced by the Department of Chemistry

1.) All students enrolling in the first course of a General Chemistry sequence must independently meet a minimum mathematics requirement and successfully complete a either the General Chemistry placement examination or a General Chemistry preparation course. See the course descriptions for General Chemistry for up-to-date information.

2.) All prerequisite chemistry courses must be completed with a C- or better. Students not meeting this requirement may be removed from course rosters before the start of an academic session. This requirement may be waived only with departmental consent.

3.) The department offers lower-level sequences several times each academic year. Due to potentially small class sizes, upper-level courses are typically scheduled every other year. Students should consult with their faculty academic advisor to develop a program they can complete in a timely fashion.

Additional information regarding department policies and course offerings can be found in the departmental handbook which can be found at http://chemistry.depaul.edu/handbook.

Faculty

LIHUA JIN, Ph.D.,
Associate Professor and Chair
Princeton University

JURGIS A. ANYSAS, Ph.D.,
Professor Emeritus
Illinois Institute of Technology

STEPHANIE BOUSSERT, Ph.D.,
Visiting Assistant Professor
University of Strasbourg and University of Barcelona

TIMOTHY FRENCH, Ph.D.,
Visiting Assistant Professor
Yale University

CAITLIN E. KARVER, Ph.D.,
Assistant Professor
College of Science and Health - Undergraduate Studies Programs of Study Chemistry Major Requirements

Major Requirements

Liberal Studies Requirements
Common Core
B.S., Analytical/Physical Chemistry Track
B.S., Biochemical/Medicinal Chemistry Track
B.S., Standard Track
B.S., Synthetic Chemistry Track
B.A., Standard Track

SEQUENCING AND PREREQUISITES

Students should begin their General Chemistry, Physics, and Calculus sequences in their freshman year, provided they have an adequate mathematics background. The Organic Chemistry sequence and Analytical Chemistry should be taken in the sophomore year. Students not yet prepared for calculus should take the prerequisite courses in the first year and take Calculus and General Physics one year later than suggested above. Advanced courses in Chemistry may be taken as soon as students have met the appropriate prerequisites.

Students in Biochemistry are recommended to consider taking the General Biology sequence (191, 192, 193) prior to taking the Biochemistry sequence.

Since the Undergraduate Common Core in Chemistry, Mathematics, and Physics is particularly demanding in the first two years, students take the majority of their Liberal Studies courses in their junior and senior years. This is necessary so that students have the necessary prerequisites for advanced courses.

TRACKS

Chemistry students must declare one Chemistry track and are limited to only declaring one track.

<table>
<thead>
<tr>
<th>First Year Program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago Quarter</td>
<td>LSP 110 or LSP 111</td>
</tr>
<tr>
<td>Focal Point</td>
<td>LSP 112</td>
</tr>
<tr>
<td>Writing</td>
<td>WRD 103* and WRD 104*</td>
</tr>
<tr>
<td>Quantitative Reasoning & Technological Literacy</td>
<td>Not Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiculturalism in the US</td>
<td>LSP 200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiential Learning</td>
<td>Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capstone</td>
<td>Required*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning Domains</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Literature (AL)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Philosophical Inquiry (PI)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Scientific Inquiry (SI)</td>
<td>Not Required</td>
</tr>
<tr>
<td>Self, Society and the Modern World (SSMW)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Religious Dimensions (RD)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Understanding the Past (UP)</td>
<td>2 Courses Required</td>
</tr>
</tbody>
</table>

Note: Courses offered in the student's primary major cannot be taken to fulfill LSP Domain requirements. If students double major, LSP Domain courses may double count for both LSP credit and the second major. Students who choose to take an experiential learning course offered by the major may count it either as a general elective or the JYEL requirement.

In meeting learning domain requirements, no more than one course that is outside the students major and is cross-listed with a course within the students major, can be applied to count for LSP domain credit. This policy.
would apply only to those students in pursuit of a BA or BS degree, and not to those who are double majors or earning BFA or BM degrees.

In addition, the Department of Chemistry recommends that students who are seeking accreditation by the American Chemical Society fulfill the Modern Language Option by completing a three-course language sequence. Please see an advisor for further information.

Common Core

All students pursuing a Bachelor of Arts or Bachelor of Science in chemistry must complete a common core of courses in the department and in allied fields. These courses are consistent with the requirements of all degree programs accredited by the American Chemical Society. The courses in the common core consist of:

Introductory Courses:

CHE 130/131: General Chemistry I (Lecture and Laboratory)
CHE 132/133: General Chemistry II (Lecture and Laboratory)
CHE 134/135: General Chemistry III (Lecture and Laboratory)

The department offers General Chemistry each summer. In this case, the combination of CHE136/137 and CHE138/139 may substitute for the three-quarter sequence above.

Foundation Courses:

CHE 202: Applied Probability and Statistics
CHE 204/205: Analytical Chemistry (Lecture and Laboratory)
CHE 230/231: Organic Chemistry I (Lecture and Laboratory)
CHE 232/233: Organic Chemistry II (Lecture and Laboratory)
CHE 302: Quantum Chemistry
CHE 303: Experimental Physical Chemistry I
CHE 304: Thermochemistry
CHE 305: Experimental Physical Chemistry II
CHE 320/321: Intermediate Inorganic Chemistry (Lecture and Laboratory)
CHE 340/341: Biochemistry I (Lecture and Laboratory)
CHE 394: Seminar

Allied Field Courses:

Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Calculus

One year of calculus is required to earn a baccalaureate degree in chemistry. This may be accomplished by completing any of the following sequences offered by the Department of Mathematical Sciences:

MAT 147/148/149: Calculus with Integrated Precalculus I/II/III
MAT 150/151/152: Calculus I/II/III
MAT 160/161/162: Calculus for Mathematics and Science Majors I/II/III
MAT 170/171/172: Calculus for Science Majors I/II/III

Students interested in earning credit for multi-variable calculus should not take the MAT170/171/172 sequence. Business calculus cannot be substituted for any of the sequences above.

Physics

One year of calculus-based physics is required to earn a baccalaureate in chemistry. This may be accomplished by completing the following sequence offered by the Department of Physics:
Non-calculus-based physics cannot be used to meet the requirements of the common core unless previously approved by the Director of Undergraduate Studies or the Chair.

B.S., Analytical/Physical Chemistry Track

The Analytical/Physical Chemistry Track offers a variety of courses at the upper-level to prepare for advanced study or employment in the areas of analytical chemistry or physical chemistry.

Requirements

Undergraduate Common Core in Chemistry, Mathematics, and Physics plus:

- CHE 234/235: Organic Chemistry III (Lecture and Laboratory)
- CHE 306: Kinetics and Molecular Dynamics
- CHE 307: Experimental Physical Chemistry III
- CHE 378: Applied Spectroscopy

In addition, students in the Analytical/Physical Track must take an additional 12 quarter credit hours taken from any of the following chemistry courses:

- CHE 264/265: Air Chemistry (Lecture and Laboratory)
- CHE 268/269: Solid Waste Chemistry (Lecture and Laboratory)
- CHE 310: Nuclear Chemistry
- CHE 318: Biophysical Chemistry
- CHE 470: Advanced Physical Chemistry I
- CHE 472: Advanced Physical Chemistry II
- CHE 474: Advanced Quantum Mechanics
- CHE 476/477: Computational Chemistry (Lecture and Laboratory)

Also, open elective coursework may be needed to reach the minimum of 192 credit hours.

B.S., Biochemical/Medicinal Chemistry Track

The Biochemistry/Medicinal Chemistry Track offers students a solid preparation for work in biotechnology or pharmaceutical fields. The track also provides a good foundation for those interested in professional fields such as medicine, dentistry, or veterinary science. Students who are thinking of pursuing advanced work in medicinal chemistry will benefit from this track as well.

Requirements

Undergraduate Common Core in Chemistry, Mathematics, and Physics plus:

- CHE 234/235: Organic Chemistry III (Lecture and Laboratory)
- CHE 342/343: Biochemistry II (Lecture and Laboratory)
- CHE 344/345: Biochemistry III (Lecture and Laboratory)

The General Biology sequence (BIO 191/192/193) may be of interest to students in this track. The sequence is not required but is recommended if time permits.
In addition, students in the Biochemistry/Medicinal Chemistry Track must take an additional 12 quarter credit hours taken from any of the following chemistry courses:

CHE 306: Kinetics and Molecular Dynamics
CHE 307: Experimental Physical Chemistry III
CHE 318: Biophysical Chemistry
CHE 360: Medicinal Chemistry
CHE 362: Drugs and Toxicology
CHE 364: Nutrition
CHE 442: Advanced Biochemistry I
CHE 444: Advanced Biochemistry II
CHE 476/477: Computational Chemistry (Lecture and Laboratory)

Also, open elective coursework may be needed to reach the minimum of 192 credit hours.

B.S., Standard Track

The Standard Track is the most flexible option for undergraduate study. It is suited for those students who intend to continue their studies at the graduate level.

Requirements

Undergraduate Common Core in Chemistry, Mathematics, and Physics plus:

CHE 234/235: Organic Chemistry III (Lecture and Laboratory)
CHE 306: Kinetics and Molecular Dynamics
CHE 307: Experimental Physical Chemistry III

In addition, students in the Standard Track must take an additional 16 quarter credit hours taken from any chemistry course numbered CHE 250 or above.

Also, open elective coursework may be needed to reach the minimum of 192 credit hours.

B.S., Synthetic Chemistry Track

The Synthetic Chemistry Track provides students with exposure to synthetic chemistry from both the organic and inorganic perspectives. The courses in this track are suitable for students thinking of graduate school or those considering working in industry.

Requirements

Undergraduate Common Core in Chemistry, Mathematics, and Physics plus:

CHE 234/235: Organic Chemistry III (Lecture and Laboratory)
CHE 326/327: Intermediate Organic Chemistry (Lecture and Laboratory)
CHE 378: Applied Spectroscopy

In addition, students in the Synthetic Track must take an additional 12 quarter credit hours taken from any of the following chemistry courses:

CHE 360: Medicinal Chemistry
CHE 360: Medicinal Chemistry
CHE 362: Drugs and Toxicology
CHE 422: Advanced Inorganic Chemistry I
CHE 424: Advanced Inorganic Chemistry II
CHE 430: Polymer Synthesis
CHE 434/435: Polymer Characterization (Lecture and Laboratory)
CHE 450: Advanced Organic Chemistry I
CHE 452: Advanced Organic Chemistry II

Additional open elective coursework may be needed to reach the minimum of 192 credit hours.

B.A., Standard Track

The Bachelor of Arts option is available for students who want a thorough, base knowledge of chemistry, and the ability to combine that education with a broader educational experience. Students earning a B.A. in chemistry usually complete their overall degree requirements with a minor in another field of study.

Requirements

Undergraduate Common Core in Chemistry, Mathematics, and Physics

Open elective coursework may be needed to reach the minimum of 192 credit hours.

Minor Requirements

A student wishing to obtain a minor in chemistry normally take seven courses in the department from the following list:

CHE 130/131 - General Chemistry I (Lecture and Laboratory)
CHE 132/133 - General Chemistry II (Lecture and Laboratory)
CHE 134/135 - General Chemistry III (Lecture and Laboratory)
CHE 204/205 - Analytical Chemistry (Lecture and Laboratory)
CHE 230/231 - Organic Chemistry I (Lecture and Laboratory)
CHE 232/233 - Organic Chemistry II (Lecture and Laboratory)
One additional course numbered above CHE 250

Special Programs

PRE-ENGINEERING CURRICULUM IN CHEMICAL ENGINEERING

The Chemical Engineering option is offered in conjunction with Illinois Institute of Technology (IIT). In the five-year program, students simultaneously earn a B.S. in Chemistry from DePaul University and a Chemical Engineering (Ch.E.) degree from IIT. Students complete the B.S. in Chemistry (Standard Concentration) at DePaul University. Students supplement their DePaul B.S. with twenty additional chemical engineering and related courses taken at IIT. It is recommended that interested students contact the chemistry engineering advisor as soon as possible.
MASTER OF SCIENCE DEGREE PROGRAM
Students planning to integrate a B.S. and M.S. degree program at DePaul University should inquire of the Director of Undergraduate Studies or the department Chair as undergraduate juniors whether they can begin studies in the Graduate School that are applicable toward a master's degree.

TEACH PROGRAM
This program provides students the opportunity to complete in as few as five years an undergraduate Chemistry major and a Masters of Education degree with State of Illinois secondary teaching certification in Chemistry. As a combined degree program of the College of Science and Health and the College of Education, the program is collaboratively developed, governed, and taught by faculty from both units.

Students may apply to the Program during the spring of their junior year. They must complete the Junior Year Experiential Course TCH 320, Exploring Teaching in an Urban High School, and meet other application criteria prior to applying; these include completion of at least 16 quarter credit hours at DePaul and a 3.0 GPA. During their senior year, students are required to complete a Program capstone course and three 400-level courses that count toward both their undergraduate and graduate degrees. The Masters year comprises teacher-preparation coursework that culminates with student teaching during Spring quarter. Upon graduation and the fulfilling of State of Illinois Certification requirements (which may require some additional course work in the students major and related fields), students are eligible to be certified to teach Chemistry at the 6th - 12th grade levels.

A full description of the Program can be found on the College of Education website in the graduate course catalog. Students interested in the Program should consult with the designated TEACH Program advisor in their home department.

Courses
Please visit Campus Connection at https://campusconnect.depaul.edu for current course information. If you do not have a password for Campus Connection you may log on as a guest. Once you are on Campus Connection please select Course Descriptions followed by the department.

Environmental Science and Studies

Introduction
The Department of Environmental Science and Studies offers two degrees: a Bachelor of Science in Environmental Science and a Bachelor of Arts in Environmental Studies. The aim of the Department is to develop the environmental literacy of our majors and enable them to become informed participants and leaders in current and future debates on the state of the environment. The department seeks to provide a supportive environment which stimulates analytical and creative thinking about environmental issues, challenging students to get the maximum benefit from their talents and skills.

The two majors offered by the Department offers students a choice of a strong science based curriculum or a multidisciplinary curriculum drawing from the natural sciences, social sciences, and humanities. The following are features common to both degrees:

- A strong interdisciplinary curriculum that draws on courses from several departments and colleges, and presents them to undergraduates as a coherent degree program.
- An experienced group of faculty who have developed academic relationships across disciplines around shared interests in environmental issues.
Close ties with the Institute for Nature and Culture (INC), a research and outreach program within the Department of Environmental Science and Studies. INC's vision to be a center for education, advanced study, experimentation, and practice relevant to the relationship between humans and their environment will provide a framework for the study of a "new environmentalism."

The B.S. degree in Environmental Science is a broad, science-based curriculum designed to prepare students for a variety of environmentally-related technical careers, as well as for graduate programs in environmental and allied fields. The program requires 192 credit hours and draws upon the faculty and resources of several departments. Majors take core courses in Biology, Chemistry, Environmental Science, Mathematics, and Physics, advanced study in Environmental Science and five University-wide electives.

The B.A. degree in Environmental Studies provides students with a holistic education on environmental topics that includes the natural and social sciences as well as the humanities. The degree allows students to connect with present and emerging environmental problems in a uniquely interdisciplinary manner, and will prepare them for positions in environmental management and in environmentally themed non-profit organizations, to bring an environmental perspective to any career, as well as preparing them for further studies. The degree is focused on the comprehensive study of human interaction with the natural environment.

The B.A. degree offers students a choice of two concentrations: A standard concentration and a sustainability concentration. Within the sustainability concentration, students can further choose an urban sustainability focus. Students selecting the sustainability concentration will recognize the concept of sustainability as a dynamic condition characterized by the interdependency among physical, biological, economic, and social systems.

Students choosing the urban sustainability focus will be able to identify the concepts and methods of environmental economics, environmental politics, ethics, design, and human geography relevant to the sustainability of environmental resources and social institutions in urban settings; as well as recognize and understand the functions of sustainable institutions created for water, land, air, and urban management at multiple spatial and temporal scales.

Faculty

JUDITH BRAMBLE, Ph.D.,
Associate Professor and Chair
University of North Carolina, Chapel Hill

EMILY BIDARI, M.S.,
Lecturer
University of Chicago

KIMBERLY FRYE, M.S.,
Lecturer
DePaul University

LIAM J. HENEGHAN, Ph.D.,
Professor
University College Dublin

CHRISTIE KLIMAS, Ph. D.,
Assistant Professor
University of Florida

BETH LAWRENCE, Ph.D.,
Assistant Professor
University of Wisconsin - Madison

JAMES A. MONTGOMERY, Ph.D.,
Affiliated Faculty

There are several DePaul faculty from other departments affiliated with the Environmental Science Program.

HUGH BARTLING, Public Policy Studies
BERNHARD BECK-WINCHATZ, STEM Studies
MICHAEL EDWARDS, First Year Programs
JAMES FAIRHALL, English
RANDALL HONOLD, Philosophy
DAVID JABON, STEM studies
WILLIAM JORDAN III, Institute for Nature & Culture

Major Requirements

B.A. in Environmental Studies

CONCENTRATION
Environmental Studies students must declare one Environmental Studies concentration and are limited to only declaring one concentration.

Liberal Studies Requirements- B.A. in Environmental Studies
B.A. in Environmental Studies - Standard Concentration
B.A. in Environmental Studies - Sustainability Concentration

B.S. in Environmental Science
Liberal Studies Requirements- B.S. in Environmental Science
B.S. in Environmental Science
Liberal Studies Requirements- B.A. in Environmental Studies

<table>
<thead>
<tr>
<th>First Year Program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago Quarter</td>
<td>LSP 110 or LSP 111</td>
</tr>
<tr>
<td>Focal Point</td>
<td>LSP 112</td>
</tr>
<tr>
<td>Writing</td>
<td>WRD 103* and WRD 104*</td>
</tr>
<tr>
<td>Quantitative Reasoning & Technological Literacy</td>
<td>LSP 120 and LSP 121</td>
</tr>
<tr>
<td></td>
<td>(Note: See information below)</td>
</tr>
<tr>
<td>Sophomore Year</td>
<td></td>
</tr>
<tr>
<td>Multiculturalism in the US</td>
<td>LSP 200</td>
</tr>
<tr>
<td>Junior Year</td>
<td></td>
</tr>
<tr>
<td>Experiential Learning</td>
<td>Required</td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
</tr>
<tr>
<td>Capstone</td>
<td>Required*</td>
</tr>
<tr>
<td>Learning Domains</td>
<td></td>
</tr>
<tr>
<td>Arts and Literature (AL)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Philosophical Inquiry (PI)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Scientific Inquiry (SI)</td>
<td>Not Required</td>
</tr>
<tr>
<td>Self, Society and the Modern World (SSMW)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Religious Dimensions (RD)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Understanding the Past (UP)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Note:</td>
<td>* Students must earn a C- or better in this course.</td>
</tr>
</tbody>
</table>

Quantitative Reasoning and Technological Literacy:
Readiness for LSP 120 is determined by the math placement test taken online after admission. Students may need to take developmental coursework prior to LSP 120. The LSP 120 requirement may be waived by credit already earned for advanced math coursework or by passing a dedicated proficiency exam. Students who complete both LSP 120 and LSP 121 take one less Learning Domain course. Students may not apply the course reduction to any Domain where only one course is required, and if taken within the SI Domain, the reduction cannot be applied to the SI Lab requirement.

Note: Courses offered in the student's primary major cannot be taken to fulfill LSP Domain requirements. If students double major, LSP Domain courses may double count for both LSP credit and the second major. Students who choose to take an experiential learning course offered by the major may count it either as a general elective or the JYEL requirement.

In meeting learning domain requirements, no more than one course that is outside the students major and is cross-listed with a course within the students major, can be applied to count for LSP domain credit. This policy does not apply to those who are pursuing a double major or earning BFA or BM degrees.
ENV 150 Foundations of Env Studies
ENV 152 Ecological Economics
ENV 216 Earth Systems Science
ENV 217 Human Impacts on the Environment
ENV 250 Applied Ecology
ENV 294 Second Year Seminar (2 quarter credits)
ENV 350 Capstone - Environmental Impact Analysis
CHE 103 Environmental Chemistry

10 courses/40 quarter credits chosen from the categories below

Natural Sciences (3 courses):
Choose three, at least one must be non-SI :
ENV 200 Cities and the Environment
ENV 204 Energy and the Environment
ENV 224 Chicago River
ENV 230 Global Climate Change
ENV 300 Plant Identification
ENV 310 Soil Science
ENV 320 Conservation Biology
ENV 322 Ecosystem Ecology
ENV 340 Urban Ecology
ENV 345 Urban Agriculture
ENV 355 Environmental Health

Social Sciences (3-4 courses):
**If ENV 150 is waived by advisor, then four must be completed.
At least one of the following:
INTC 325 Promoting Sustainable Practices
INTC 326 Environmental Communication Workshop

At least two of the following:
(If both INTC 325 and INTC 326 are taken, then at least one of the following)
ENV 151 Introduction to Sustainability
ENV 345 Urban Agriculture
INTC 324 Culture of Consumption
GEO 205 Justice, Inequality and the Urban Environment
PPS 330 Sustainable Development
PPS 333 Green Cities
PPS 335 Land Use Policy
SOC 232 Global Cities
SOC 348 The City in the Future

Humanities (4 courses):
At least one, but not more than two, of the following:
ENV 160 Ideas of Nature
ENV 170 Environmental Ethics
PHL 235 Philosophy and the Environment

At least two of the following:
ENV 180 Issues in Environmental Design
ENV 181 Landscape and Meaning
ENG 367 Environmental Literature
HST 240 History of Chicago
HST 270 US Historical Landscape
REL 262 Religion & Globalization

Others by approval.

Open elective credit also is required to meet the minimum graduation requirement of 192 hours.
The Modern Language Requirement must be met for the B.A. degree.

B.A. in Environmental Studies - Sustainability Concentration

CORE (10 courses/38 quarter credits):
- ENV 150 Foundations of Env Studies
- ENV 151 Introduction to Sustainability
- ENV 152 Ecological Economics
- ENV 216 Earth Systems Science
- ENV 217 Human Impacts on the Environment
- ENV 250 Applied Ecology
- ENV 294 Second Year Environmental Seminar (2 quarter credits)
- ENV 350 Capstone - Environmental Impact Analysis
- CHE 103 Environmental Chemistry
- PPS 330 Sustainable Development

8 courses/32 quarter credits chosen from the categories below
* Students with an interest in Urban Sustainability are encouraged to select the courses with asterisks.

Natural Sciences (at least 2 courses)
* ENV 200 Cities and the Environment
- ENV 204 Energy and the Environment
- ENV 230 Global Climate Change
- ENV 320 Conservation Biology
* ENV 340 Urban Ecology
* ENV 345 Urban Agriculture

Social Sciences (at least 2 courses)
- INTC 324 Culture of Consumption
* INTC 325 Promoting Sustainable Practices
- INTC 326 Environmental Rhetoric and Politics
- GEO 205 Justice, Inequality, and the Urban Environment
* PPS 333 Green Cities
- PPS 335 Land Use Policy

Humanities (at least 2 courses)
- ENV 160 Ideas of Nature
- ENV 170 Environmental Ethics
- ENV 180 Issues in Environmental Design

Others by approval.

Open elective credit also is required to meet the minimum graduation requirement of 192 hours.

The Modern Language Requirement must be met for the B.A. Degree.
<table>
<thead>
<tr>
<th>Learning Domains</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Literature (AL)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Philosophical Inquiry (PI)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Scientific Inquiry (SI)</td>
<td>Not Required</td>
</tr>
<tr>
<td>Self, Society and the Modern World (SSMW)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Religious Dimensions (RD)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Understanding the Past (UP)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Note:</td>
<td>* Students must earn a C- or better in this course.</td>
</tr>
</tbody>
</table>

Note: Courses offered in the student's primary major cannot be taken to fulfill LSP Domain requirements. (ENV 150, 160, 170, and 205 are exceptions to this rule.) If students double major, LSP Domain courses may double count for both LSP credit and the second major. Students who choose to take an experiential learning course offered by the major may count it either as a general elective or the JYEL requirement.

In meeting learning domain requirements, no more than one course that is outside the students major and is cross-listed with a course within the students major, can be applied to count for LSP domain credit. This policy would apply only to those students in pursuit of a BA or BS degree, and not to those who are double majors or earning BFA or BM degrees.

B.S. in Environmental Science

CORE (8 courses/28 quarter credits)
ENV 250 Applied Ecology or BIO 215 Ecology
ENV 216 Earth Systems Science
ENV 217 Human Impacts on the Environment
ENV 260 Environmental Data Analysis or BIO 206 Biostatistics
ENV 294 Second Year Seminar (2 quarter credits)
ENV 350 Capstone Environmental Impact Analysis
ENV 360 Research Methods
ENV 362 Senior Thesis (2 quarter credits)

ENVIRONMENTAL SCIENCE ELECTIVES (3 courses/12 quarter credits)
ENV 300 Plant Identification
ENV 310 Soil Science
ENV 315 Plant Ecology
ENV 316 Chemistry of Earth Systems
ENV 320 Conservation Biology
ENV 322 Ecosystem Ecology
ENV 330 Field Methods
ALLIED FIELD COURSES:

Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

ALLIED FIELD CORE (12 courses/48 quarter credits)

BIO 191 General Bio I
BIO 192 General Bio II
BIO 193 General Bio III
CHE 130/131 General/Analy Chem I
CHE 132/133 General/Analy Chem II
CHE 134/135 General/Analy Chem III
MAT 147 OR 150 OR 170 Calculus I
MAT 148 OR 151 OR 171 Calculus II
MAT 149 OR 152 OR 172 Calculus III
PHY 150 General Physics I
PHY 151 General Physics II
PHY 152 General Physics III

ALLIED FIELD ELECTIVES (3 courses/12 quarter credits)

Choose from within one discipline

Biology:
BIO 210, 235, 260, 317, 321, 350
Chemistry:
CHE 230/231, 232/233, 234/235
CHE 204/205, 264/265, 268/269, 340/341
Geography (GIS):
GEO 240, 241, 242, 243

FREE ELECTIVES (5 courses/20 quarter credits)

SENIOR THESIS
Students in the B.S. in Environmental Science degree program do a research project leading to a senior thesis. This is a distinctive feature of the major and allows students to have valuable, direct experience in the field of environmental science. This requirement is fulfilled by the successful completion of ENV 362.

Minor Requirements

The Department of Environmental Science & Studies offers three different minors: Environmental Science, Environmental Studies, and a new Sustainability Studies minor.

ENVIRONMENTAL SCIENCE MINOR

The Environmental Science Minor consists of six Environmental Science courses.

- ENV 102 - Introduction to Environmental Science
- ENV 216 - Earth Systems Science
- ENV 217 - Human Impacts on the Environment
- ENV 250 - Applied Ecology
- Two additional ENV courses from the following. One must be a 300-level course
 ENV 200 - Cities and the Environment
 ENV 204 - Energy and the Environment
 ENV 224 - Environment of the Chicago River
ENVIRONMENTAL STUDIES MINOR
The Environmental Studies Minor consists of six courses:

- ENV 102 - Introduction to Environmental Science
- ENV 150 - Foundations of Environmental Studies
- ENV 160 - Ideas of Nature or ENV 170 Environmental Ethics or PHL 235 Philosophy and the Environment
- INTC 325 - Promoting Sustainable Practices or INTC 326 Environmental Politics and Rhetoric
- Two from:
 - ENV 152 - Ecological Economics
 - ENV 180 - Environmental Design
 - ENV 181 - Landscape and Meaning
 - ENV 200 - Cities and the Environment
 - ENV 204 - Energy and the Environment
 - ENV 224 - Chicago River
 - ENV 230 - Global Climate Change
 - Any 300 level ENV course

SUSTAINABILITY STUDIES MINOR

- ENV 102 - Introduction to Environmental Science
- ENV 151 - Introduction to Sustainability
- ENV 152 - Ecological Economics
- PPS 330 Sustainable Development
- INTC 325 - Promoting Sustainable Practices or INTC 326 Environmental Politics and Rhetoric
- Sustainability elective -- choose one from the following:
 - ENV 204 - Energy and the Environment
 - ENV 230 - Global Climate Change
 - ENV 320 - Conservation Biology
 - ENV 345 - Urban Agriculture
 - PPS 333 - Green Cities
 - GEO 205 - Justice, Inequity, and Urban Environment

Special Programs

COMBINED-DEGREE [B.A./B.S.-M.Ed.] TEACHER-EDUCATION PROGRAM
This program provides students the opportunity to complete in as few as five years an undergraduate Environmental Science major and a Masters of Education degree with State of Illinois secondary teaching certification in Environmental Science. As a combined degree program of the College of Science and Health and the School of Education, the program is collaboratively developed, governed, and taught by faculty from both units. Students may apply to the Program during the spring of their junior year. They must complete the Junior Year Experiential Course TCH 320, Exploring Teaching in an Urban High School, and meet other application criteria prior to applying; these include completion of at least 16 quarter credit hours at DePaul and a 3.0 GPA. During their senior year, students are required to complete a Program capstone course and three 400-level courses that count toward both their undergraduate and graduate degrees. The Masters year comprises teacher-preparation coursework that culminates with student teaching during Spring quarter. Upon graduation and the fulfilling of State of Illinois Certification requirements (which may require some additional course work in the students major and related fields), students are eligible to be certified to teach Environmental Science at the 6th-12th grade levels.

A full description of the Program can be found on the School of Education website in the graduate course catalog. Students interested in the Program should consult with the designated Program advisor in their home department.
Courses

Please visit Campus Connection at https://campusconnect.depaul.edu for current course information. If you do not have a password for Campus Connection you may log on as a guest. Once you are on Campus Connection please select Course Descriptions followed by the department.

Health Sciences

Introduction

Over the next ten to twenty years and beyond, our nation will require increasing numbers and varieties of health care professionals to meet the needs of a growing and aging population: doctors and nurses, to be sure, but also nurse practitioners, physicians assistants, nurse anesthetists, physical therapists, occupational therapists, pathologists assistants, clinical psychologists, radiation technologists, pharmacists, podiatrists, and more. Likewise, the creation of policies and structures for health care delivery and education, on the one hand, and the day-to-day management of health care delivery, on the other, will require a host of public health officials, health educators, crisis management experts, case managers, and hospital administrators, to name a few. None of these professionals work in isolation; teams of clinicians and technicians, by necessity, join forces with respect to each one’s appropriate role, and their work takes place in the context of public and health policy and within a variety of health care delivery settings. It has never been more important for all health care professionals, no matter what their role, to understand the range of expertise involved in this enterprise, and to be able to work together to solve problems.

The Health Sciences major offers concentrations in BioScience and Health Care, Policy, and Practice that will enable future health care professionals to begin this cross-disciplinary conversation even earlier. In addition to General tracks, each concentration offers tracks that help students focus their interests and prepare for future careers. In BioScience students can choose from tracks in Medicine, Nursing, or Laboratory Investigations; while in Health Care, Policy, and Practice, students can choose tracks in Health Education, Community and Public Health or Health Policy and Administration. This degree a) provides students interested in pursuing a career in one of many health-related professions with a common core of knowledge; b) provides a general track in each concentration but also articulates additional tracks that meet requirements for entry into graduate programs; c) provides enough flexibility to enable students to move among those tracks as their interests evolve, and d) brings students headed for multiple health-related professions into on-going conversation with each other. The curriculum is built on the principle that, in order to be effective, health care professionals need to understand both the factors that impact the health of individuals and the factors that impact the health of populations.

Faculty

DOROTHY A. KOZLOWSKI, Ph.D.
 Chair, Health Sciences
 Associate Professor, Biological Sciences
 University of Texas at Austin

DOUGLAS BRUCE, Ph.D., M.S.W.
 Assistant Professor
Major Requirements

CONCENTRATION
Health Sciences students must declare one Health Sciences concentration and are limited to only declaring one concentration.

Liberal Studies Requirements
I. BioScience Concentration
II. Health Care, Policy, and Practice Concentration

Liberal Studies Requirements

<table>
<thead>
<tr>
<th>First Year Program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago Quarter</td>
<td>LSP 110 or LSP 111</td>
</tr>
<tr>
<td>Focal Point</td>
<td>LSP 112</td>
</tr>
<tr>
<td>Writing</td>
<td>WRD 103* and WRD 104*</td>
</tr>
<tr>
<td>Quantitative Reasoning & Technological Literacy</td>
<td>Not Required for BioScience Concentration. LSP 120 and LSP 121 are required for Health Care, Policy, and Practice**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiculturalism in the US</td>
<td>LSP 200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiential Learning</td>
<td>Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capstone</td>
<td>Required*</td>
</tr>
</tbody>
</table>

Learning Domains

<table>
<thead>
<tr>
<th>Arts and Literature (AL)</th>
<th>3 Courses Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philosophical Inquiry (PI)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>Scientific Inquiry (SI)</td>
<td>Not Required</td>
</tr>
<tr>
<td>Self, Society and the Modern World (SSMW)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Religious Dimensions (RD)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td></td>
<td>See Note Below</td>
</tr>
<tr>
<td>Understanding the Past (UP)</td>
<td>2 Courses Required</td>
</tr>
</tbody>
</table>
Note: Courses offered in the student’s primary major cannot be taken to fulfill LSP Domain requirements. If students double major, LSP Domain courses may double count for both LSP credit and the second major. Students who choose to take an experiential learning course offered by the major may count it either as a general elective or the JYEL requirement.

In meeting learning domain requirements, no more than one course that is outside the students major and is cross-listed with a course within the students major, can be applied to count for LSP domain credit. This policy does not apply to those who are pursuing a double major or earning BFA or BM degrees.

Quantitative Reasoning and Technological Literacy (for Health Care, Policy, and Practice Concentration only): Readiness for LSP 120 is determined by the math placement test taken online after admission. Students may need to take developmental coursework prior to LSP 120. The LSP 120 requirement may be waived by credit already earned for advanced math coursework or by passing a dedicated proficiency exam. Students who complete both LSP 120 and LSP 121 take one less Learning Domain course. Students may not apply the course reduction to any Domain where only one course is required.

I. BioScience Concentration

CORE

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 201</td>
<td>Introduction to Health Sciences</td>
</tr>
<tr>
<td>HLTH 202</td>
<td>Health Research Literacy</td>
</tr>
<tr>
<td>HLTH 350</td>
<td>Health Science Capstone</td>
</tr>
<tr>
<td>BIO 191</td>
<td>General Biology I</td>
</tr>
<tr>
<td>BIO 210</td>
<td>Microbiology</td>
</tr>
</tbody>
</table>

BIO SCIENCE CONCENTRATION

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 192</td>
<td>General Biology II</td>
</tr>
<tr>
<td>BIO 193</td>
<td>General Biology III</td>
</tr>
<tr>
<td>BIO 206</td>
<td>Biostatistics</td>
</tr>
<tr>
<td>CHE 130/131</td>
<td>General Chemistry I (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 132/133</td>
<td>General Chemistry II (Lecture and Laboratory)</td>
</tr>
<tr>
<td>BIO 250</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>BIO 310</td>
<td>Vertebrate Physiology</td>
</tr>
</tbody>
</table>

Students will select and complete the requirements of one of the following tracks: General, Medical, Lab Investigations or Nursing.

GENERAL TRACK:
Select 10 courses from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 210</td>
<td>Introduction to Public Health</td>
</tr>
<tr>
<td>HLTH 380</td>
<td>Topics in Health Sciences</td>
</tr>
<tr>
<td>HLTH 399</td>
<td>Independent Study</td>
</tr>
<tr>
<td>CHE 134/135</td>
<td>General Chemistry III (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 230/231</td>
<td>Organic Chemistry I (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 232/233</td>
<td>Organic Chemistry II (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 234/235</td>
<td>Organic Chemistry III (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 340/341</td>
<td>Biochemistry (Lecture and Laboratory)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>PHY 150</td>
<td>General Physics I</td>
</tr>
<tr>
<td>PHY 151</td>
<td>General Physics II</td>
</tr>
<tr>
<td>PHY 152</td>
<td>General Physics III</td>
</tr>
<tr>
<td>BIO 201</td>
<td>Mammalian Anatomy</td>
</tr>
<tr>
<td>BIO 220</td>
<td>Principles of Biotechnology</td>
</tr>
<tr>
<td>BIO 230</td>
<td>Epidemiology</td>
</tr>
<tr>
<td>BIO 260</td>
<td>Genetics</td>
</tr>
<tr>
<td>BIO 270</td>
<td>Comparative Vertebrate Anatomy</td>
</tr>
<tr>
<td>BIO 311</td>
<td>Histology</td>
</tr>
<tr>
<td>BIO 330</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIO 331</td>
<td>Topics in Developmental Biology</td>
</tr>
<tr>
<td>BIO 339</td>
<td>Cellular Neurobiology</td>
</tr>
<tr>
<td>BIO 340</td>
<td>Systems Neurobiology</td>
</tr>
<tr>
<td>BIO 347</td>
<td>Topics in Medical Bacteriology</td>
</tr>
<tr>
<td>BIO 348</td>
<td>The Biology of Infection</td>
</tr>
<tr>
<td>BIO 355</td>
<td>Genetic Toxicology</td>
</tr>
<tr>
<td>BIO 360</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIO 365</td>
<td>Principles of Toxicology</td>
</tr>
<tr>
<td>BIO 370</td>
<td>Immunobiology</td>
</tr>
<tr>
<td>BIO 375</td>
<td>Introduction to Pharmacology</td>
</tr>
<tr>
<td>BIO 380</td>
<td>Cancer Biology</td>
</tr>
<tr>
<td>BIO 386</td>
<td>Introduction to Endocrinology</td>
</tr>
<tr>
<td>MAT 150</td>
<td>Calculus I</td>
</tr>
<tr>
<td>MAT 151</td>
<td>Calculus II</td>
</tr>
<tr>
<td>MAT 152</td>
<td>Calculus III</td>
</tr>
<tr>
<td>PSY 105 or</td>
<td>Introductory Psychology I or II</td>
</tr>
<tr>
<td>PSY 106</td>
<td></td>
</tr>
</tbody>
</table>

MEDICAL TRACK:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 134/135</td>
<td>General Chemistry III (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 230/231</td>
<td>Organic Chemistry I (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 232/233</td>
<td>Organic Chemistry II (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 234/235</td>
<td>Organic Chemistry III (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 340/341</td>
<td>Biochemistry (Lecture and Laboratory)</td>
</tr>
<tr>
<td>PHY 150</td>
<td>General Physics I</td>
</tr>
<tr>
<td>PHY 151</td>
<td>General Physics II</td>
</tr>
<tr>
<td>PHY 152</td>
<td>General Physics III</td>
</tr>
<tr>
<td>BIO 201</td>
<td>Mammalian Anatomy</td>
</tr>
</tbody>
</table>

Select one course from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 210</td>
<td>Introduction to Public Health</td>
</tr>
<tr>
<td>HLTH 380</td>
<td>Topics in Health Sciences</td>
</tr>
<tr>
<td>HLTH 399</td>
<td>Independent Study</td>
</tr>
<tr>
<td>BIO 220</td>
<td>Principles of Biotechnology</td>
</tr>
<tr>
<td>BIO 230</td>
<td>Epidemiology</td>
</tr>
<tr>
<td>BIO 260</td>
<td>Genetics</td>
</tr>
<tr>
<td>BIO 270</td>
<td>Comparative Vertebrate Anatomy</td>
</tr>
<tr>
<td>BIO 311</td>
<td>Histology</td>
</tr>
<tr>
<td>BIO 330</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIO 331</td>
<td>Topics in Developmental Biology</td>
</tr>
<tr>
<td>BIO 339</td>
<td>Cellular Neurobiology</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>BIO 340</td>
<td>Systems Neurobiology</td>
</tr>
<tr>
<td>BIO 347</td>
<td>Topics in Medical Bacteriology</td>
</tr>
<tr>
<td>BIO 348</td>
<td>The Biology of Infection</td>
</tr>
<tr>
<td>BIO 355</td>
<td>Genetic Toxicology</td>
</tr>
<tr>
<td>BIO 360</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIO 365</td>
<td>Principles of Toxicology</td>
</tr>
<tr>
<td>BIO 370</td>
<td>Immunobiology</td>
</tr>
<tr>
<td>BIO 375</td>
<td>Introduction to Pharmacology</td>
</tr>
<tr>
<td>BIO 380</td>
<td>Cancer Biology</td>
</tr>
<tr>
<td>BIO 386</td>
<td>Introduction to Endocrinology</td>
</tr>
<tr>
<td>MAT 150</td>
<td>Calculus I</td>
</tr>
<tr>
<td>MAT 151</td>
<td>Calculus II</td>
</tr>
<tr>
<td>MAT 152</td>
<td>Calculus III</td>
</tr>
<tr>
<td>PSY 105 or PSY 106</td>
<td>Introductory Psychology I or II</td>
</tr>
</tbody>
</table>

LAB INVESTIGATIONS TRACK

CHE 134/135	General Chemistry III (Lecture and Laboratory)
CHE 230/231	Organic Chemistry I (Lecture and Laboratory)
CHE 232/233	Organic Chemistry II (Lecture and Laboratory)
CHE 234/235	Organic Chemistry III (Lecture and Laboratory)
BIO 260	Genetics
BIO 311	Histology
BIO 360	Molecular Biology

Select three courses from the following:

<p>| HLTH 210 | Introduction to Public Health |
| HLTH 380 | Topics in Health Sciences |
| HLTH 399 | Independent Study |
| CHE 340/341 | Biochemistry (Lecture and Laboratory) |
| PHY 150 | General Physics I |
| PHY 151 | General Physics II |
| PHY 152 | General Physics III |
| BIO 201 | Mammalian Anatomy |
| BIO 220 | Principles of Biotechnology |
| BIO 230 | Epidemiology |
| BIO 270 | Comparative Vertebrate Anatomy |
| BIO 330 | Developmental Biology |
| BIO 331 | Topics in Developmental Biology |
| BIO 339 | Cellular Neurobiology |
| BIO 340 | Systems Neurobiology |
| BIO 347 | Topics in Medical Bacteriology |
| BIO 348 | The Biology of Infection |
| BIO 355 | Genetic Toxicology |
| BIO 365 | Principles of Toxicology |
| BIO 370 | Immunobiology |
| BIO 375 | Introduction to Pharmacology |
| BIO 380 | Cancer Biology |
| BIO 386 | Introduction to Endocrinology |</p>
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 150</td>
<td>Calculus I</td>
</tr>
<tr>
<td>MAT 151</td>
<td>Calculus II</td>
</tr>
<tr>
<td>MAT 152</td>
<td>Calculus III</td>
</tr>
<tr>
<td>PSY 105 or</td>
<td>Introductory Psychology I or II</td>
</tr>
<tr>
<td>PSY 106</td>
<td></td>
</tr>
</tbody>
</table>

NURSING TRACK:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 201</td>
<td>Mammalian Anatomy</td>
</tr>
<tr>
<td>NSG 481</td>
<td>Nursing Biostatistics & Epidemiology</td>
</tr>
<tr>
<td>PSY 303</td>
<td>Human Development</td>
</tr>
<tr>
<td>CHE 228/229 or CHE 230/231</td>
<td>Survey of Organic Chemistry (Lecture and Laboratory) or Organic Chemistry I (Lecture and Laboratory)</td>
</tr>
</tbody>
</table>

Select six courses from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 210</td>
<td>Introduction to Public Health</td>
</tr>
<tr>
<td>HLTH 380</td>
<td>Topics in Health Sciences</td>
</tr>
<tr>
<td>HLTH 399</td>
<td>Independent Study</td>
</tr>
<tr>
<td>CHE 134/135</td>
<td>General Chemistry III (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 232/233</td>
<td>Organic Chemistry II (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 234/235</td>
<td>Organic Chemistry III (Lecture and Laboratory)</td>
</tr>
<tr>
<td>CHE 340/341</td>
<td>Biochemistry (Lecture and Laboratory)</td>
</tr>
<tr>
<td>PHY 150</td>
<td>General Physics I</td>
</tr>
<tr>
<td>PHY 151</td>
<td>General Physics II</td>
</tr>
<tr>
<td>PHY 152</td>
<td>General Physics III</td>
</tr>
<tr>
<td>BIO 220</td>
<td>Principles of Biotechnology</td>
</tr>
<tr>
<td>BIO 230</td>
<td>Epidemiology</td>
</tr>
<tr>
<td>BIO 260</td>
<td>Genetics</td>
</tr>
<tr>
<td>BIO 270</td>
<td>Comparative Vertebrate Anatomy</td>
</tr>
<tr>
<td>BIO 311</td>
<td>Histology</td>
</tr>
<tr>
<td>BIO 330</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIO 331</td>
<td>Topics in Developmental Biology</td>
</tr>
<tr>
<td>BIO 339</td>
<td>Cellular Neurobiology</td>
</tr>
<tr>
<td>BIO 340</td>
<td>Systems Neurobiology</td>
</tr>
<tr>
<td>BIO 347</td>
<td>Topics in Medical Bacteriology</td>
</tr>
<tr>
<td>BIO 348</td>
<td>The Biology of Infection</td>
</tr>
<tr>
<td>BIO 355</td>
<td>Genetic Toxicology</td>
</tr>
<tr>
<td>BIO 360</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIO 365</td>
<td>Principles of Toxicology</td>
</tr>
<tr>
<td>BIO 370</td>
<td>Immunobiology</td>
</tr>
<tr>
<td>BIO 375</td>
<td>Introduction to Pharmacology</td>
</tr>
<tr>
<td>BIO 380</td>
<td>Cancer Biology</td>
</tr>
<tr>
<td>BIO 386</td>
<td>Introduction to Endocrinology</td>
</tr>
<tr>
<td>MAT 150</td>
<td>Calculus I</td>
</tr>
<tr>
<td>MAT 151</td>
<td>Calculus II</td>
</tr>
<tr>
<td>MAT 152</td>
<td>Calculus III</td>
</tr>
<tr>
<td>PSY 105 or</td>
<td>Introductory Psychology I or II</td>
</tr>
<tr>
<td>PSY 106</td>
<td></td>
</tr>
</tbody>
</table>
II. Health Care, Policy, and Practice Concentration

CORE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 201</td>
<td>Introduction to Health Sciences</td>
</tr>
<tr>
<td>HLTH 202</td>
<td>Health Research Literacy</td>
</tr>
<tr>
<td>HLTH 350</td>
<td>Health Science Capstone</td>
</tr>
<tr>
<td>BIO 191</td>
<td>General Biology I</td>
</tr>
<tr>
<td>BIO 210</td>
<td>Microbiology</td>
</tr>
</tbody>
</table>

HEALTH CARE POLICY AND PRACTICE CONCENTRATION

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Select one from: BIO 206 Biostatistics, MAT 242 Elements of Statistics, PSY 240 Statistics I, NSG 480 Statistical Methods, and SOC 279 Introductory Statistics for the Social Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 106</td>
<td>Introductory Psychology II</td>
</tr>
<tr>
<td>HLTH 210</td>
<td>Introduction to Public Health</td>
</tr>
<tr>
<td>HLTH 310</td>
<td>Social Epidemiology</td>
</tr>
<tr>
<td>SOC 221</td>
<td>Introduction to the US Health Care System</td>
</tr>
<tr>
<td>SOC 351</td>
<td>Health Disparities</td>
</tr>
<tr>
<td>CMNS 315</td>
<td>Health Communication</td>
</tr>
<tr>
<td>ANT 272</td>
<td>Introduction to Medical Anthropology</td>
</tr>
</tbody>
</table>

Students will select and complete the requirements of one of the following tracks: General, Health Education, Community and Public Health or Health Policy and Administration.

GENERAL HEALTH CARE, POLICY AND PRACTICE TRACK

Choose nine courses from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORGC 212</td>
<td>Small Group Communication</td>
</tr>
<tr>
<td>ORGC 251</td>
<td>Introduction to Organizational Communication</td>
</tr>
<tr>
<td>PSY 355</td>
<td>Groups and Organizations</td>
</tr>
<tr>
<td>PSY 382</td>
<td>Organizational Behavior</td>
</tr>
<tr>
<td>SOC 342</td>
<td>Organizational Dynamics</td>
</tr>
<tr>
<td>PE 273</td>
<td>Health and Nutrition</td>
</tr>
<tr>
<td>SOC 370</td>
<td>People, Places and Food</td>
</tr>
<tr>
<td>PRAD 338</td>
<td>Health and Public Relations</td>
</tr>
<tr>
<td>PSY 105</td>
<td>Introductory Psychology I</td>
</tr>
<tr>
<td>PSY 215</td>
<td>Human Sexuality</td>
</tr>
<tr>
<td>PSY 302</td>
<td>Personal Adjustment and Mental Health</td>
</tr>
<tr>
<td>PSY 353</td>
<td>Abnormal Psychology</td>
</tr>
<tr>
<td>SOC 353</td>
<td>Sociology of Mental Illness</td>
</tr>
<tr>
<td>PSY 364</td>
<td>Health Psychology and Stress Management</td>
</tr>
<tr>
<td>SOC 365</td>
<td>Health and Globalization</td>
</tr>
<tr>
<td>PSY 241</td>
<td>Research Methods I</td>
</tr>
<tr>
<td>SOC 380</td>
<td>Research Methods I</td>
</tr>
<tr>
<td>PSY 242</td>
<td>Research Methods II</td>
</tr>
<tr>
<td>SOC 381</td>
<td>Research Methods II</td>
</tr>
<tr>
<td>Cultural Issues in Psychology</td>
<td></td>
</tr>
</tbody>
</table>
PSY 345
- Cultural Issues in Psychology
- Group Diversity

PSY 354
- Community Psychology

At most one from:
- **PSY 363**
 - Alcoholism, Drug Addiction and Recovery
 - Sociology of Substance Use and Abuse
- **SOC 307**

SOC 321
- Health and Human Service Organizations

SOC 373
- Public Health and High Risk Behavior

SOC 223
- Sociology of Health and Wellness

ANT 360
- Topics in Medical Anthropology

HLTH 380
- Topics in Health Sciences

HLTH 399
- Independent Study

HEALTH EDUCATION TRACK:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE 273 or</td>
<td>Health and Nutrition or</td>
</tr>
<tr>
<td>SOC 370</td>
<td>People, Places and Food</td>
</tr>
<tr>
<td>PSY 105</td>
<td>Introductory Psychology I</td>
</tr>
<tr>
<td>One from:</td>
<td></td>
</tr>
<tr>
<td>PSY 302</td>
<td>Personal Adjustment and Mental Health</td>
</tr>
<tr>
<td>PSY 353</td>
<td>Abnormal Psychology</td>
</tr>
<tr>
<td>SOC 353</td>
<td>Sociology of Mental Illness</td>
</tr>
<tr>
<td>PSY 364</td>
<td>Health Psychology and Stress Management</td>
</tr>
<tr>
<td>PSY 363 or</td>
<td>Alcoholism, Drug Addiction and Recovery</td>
</tr>
<tr>
<td>SOC 307</td>
<td>Sociology of Substance Use and Abuse</td>
</tr>
</tbody>
</table>

Choose four from the following:

At most one from:
- **ORGC 212**
 - Small Group Communication or
- **ORGC 251**
 - Introduction to Organizational Communication
- **PSY 355**
 - Groups and Organizations
- **PSY 382**
 - Organizational Behavior
- **SOC 342**
 - Organizational Dynamics
- **PRAD 338**
 - Health and Public Relations
- **PSY 215**
 - Human Sexuality

At most one from:
- **PSY 241**
 - Research Methods I
- **SOC 380**
 - Research Methods I

At most one from:
- **PSY 242**
 - Research Methods II
- **SOC 381**
 - Research Methods II

At most one from:
- **PSY 345**
 - Cultural Issues in Psychology
- **SOC 250**
 - Group Diversity
- **PSY 354**
 - Community Psychology
- **SOC 365**
 - Health and Globalization
- **SOC 321**
 - Health and Human Service Organizations
- **SOC 223**
 - Sociology of Health and Wellness
- **SOC 373**
 - Public Health and High Risk Behavior
- **ANT 360**
 - Topics in Medical Anthropology
- **HLTH 380**
 - Topics in Health Sciences
- **HLTH 399**
 - Independent Study

COMMUNITY AND PUBLIC HEALTH TRACK:

Choose one from:
- **ORGC 212**
 - Small Group Communication
- **ORGC 251**
 - Introduction to Organizational Communication
<table>
<thead>
<tr>
<th>Course 1</th>
<th>Course 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 355</td>
<td>Groups and Organizations</td>
</tr>
<tr>
<td>PSY 382</td>
<td>Organizational Behavior</td>
</tr>
<tr>
<td>SOC 342</td>
<td>Organizational Dynamics</td>
</tr>
<tr>
<td>PSY 364</td>
<td>Health Psychology and Stress Management</td>
</tr>
<tr>
<td>PSY 354</td>
<td>Community Psychology</td>
</tr>
<tr>
<td>SOC 250 or</td>
<td>Group Diversity</td>
</tr>
<tr>
<td>PSY 345</td>
<td>Cultural Issues in Psychology</td>
</tr>
<tr>
<td>SOC 373</td>
<td>Public Health and High Risk Behavior</td>
</tr>
<tr>
<td>SOC 365</td>
<td>Health and Globalization</td>
</tr>
</tbody>
</table>

Choose three from the following:

At most one from:
- PE 273
- SOC 370
- PRAD 338
- PSY 105
- PSY 215

At most one from:
- PSY 302
- PSY 353
- SOC 353

At most one from:
- PSY 241
- SOC 380

At most one from:
- PSY 242
- SOC 381

At most one from:
- PSY 363
- SOC 307

SOC 321 | Health and Human Service Organizations |
SOC 223 | Sociology of Health and Wellness |
ANT 360 | Topics in Medical Anthropology |
HLTH 380 | Topics in Health Sciences |
HLTH 399 | Independent Study |

HEALTH POLICY AND ADMINISTRATION

One from:
- ORGC 212
- ORGC 251
- PSY 355
- PSY 382
- SOC 342
- PRAD 338

At most one from:
- PSY 241 or SOC 380

At most one from:
- PSY 242 or SOC 381

At most one from:
- SOC 321

Choose three from:

At most one from:
- PE 273
- SOC 370
- PSY 105
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 215</td>
<td>Human Sexuality</td>
</tr>
<tr>
<td>At most one from:</td>
<td></td>
</tr>
<tr>
<td>PSY 302</td>
<td>Personal Adjustment and Mental Health</td>
</tr>
<tr>
<td>PSY 353</td>
<td>Abnormal Psychology</td>
</tr>
<tr>
<td>SOC 353</td>
<td>Sociology of Mental Illness</td>
</tr>
<tr>
<td>At most one from:</td>
<td></td>
</tr>
<tr>
<td>PSY 345</td>
<td>Cultural Issues in Psychology</td>
</tr>
<tr>
<td>SOC 250</td>
<td>Group Diversity</td>
</tr>
<tr>
<td>PSY 354</td>
<td>Community Psychology</td>
</tr>
<tr>
<td>At most one from:</td>
<td></td>
</tr>
<tr>
<td>PSY 363</td>
<td>Alcoholism, Drug Addiction and Recovery</td>
</tr>
<tr>
<td>SOC 307</td>
<td>Sociology of Substance Use and Abuse</td>
</tr>
<tr>
<td>SOC 373</td>
<td>Public Health and High Risk Behavior</td>
</tr>
<tr>
<td>ANT 360</td>
<td>Topics in Medical Anthropology</td>
</tr>
<tr>
<td>HLTH 380</td>
<td>Topics in Health Sciences</td>
</tr>
<tr>
<td>HLTH 399</td>
<td>Independent Study</td>
</tr>
</tbody>
</table>

College of Science and Health - Undergraduate Studies ▶ Programs of Study ▶ Health Sciences ▶ Courses

Courses

Please visit Campus Connection at https://campusconnect.depaul.edu for current course information. If you do not have a password for Campus Connection you may log on as a guest. Once you are on Campus Connection please select Course Descriptions followed by the department.

Mathematical Sciences

College of Science and Health - Undergraduate Studies ▶ Programs of Study ▶ Mathematical Sciences

Introduction

The Department of Mathematical Sciences offers courses in pure and applied mathematics to help students reach a wide variety of intellectual, academic, and career goals.

Many students come to the department to obtain the mathematical background needed to be successful in programs in the natural sciences, computer science, and social sciences, and business. Such students may choose to supplement their major in their home department by obtaining a minor in mathematics.

Other students come to the department seeking a program leading to an undergraduate or graduate degree in one of the mathematical sciences. Undergraduate students majoring in mathematical sciences may choose one of seven areas of concentration:

- Pure Mathematics
- Statistics
- Actuarial Science
- Teacher of Mathematics: Secondary Level
- Financial Mathematics
- Quantitative Analysis and Operations Research
- Applied and Computational Mathematics

In consultation with a mathematics faculty advisor, undergraduate students may also create an individualized program of courses leading to a degree in mathematical sciences.
A thesis option is available to mathematics majors who wish to pursue an extended independent project related to a theoretical or applied focus of the program. Students would work under the guidance of a faculty mentor. At least 4 credits must be completed over one or two quarters prior to the thesis submission. Interested students are strongly encouraged to enroll in MAT 390 during their junior year.

Faculty

AHMED ZAYED, Ph.D.,
Professor and Chair
University of Wisconsin

MOHAMED AMEZZIANE, Ph.D.,
Assistant Professor
University of Central Florida

J. MARSHALL ASH, Ph.D.,
Professor
University of Chicago

ALLAN BERELE, Ph.D.,
Professor
University of Chicago

JEFFREY BERGEN, Ph.D.,
Professor
University of Chicago

WILLIAM BUTTERWORTH, Ph.D.,
Associate Professor
Northwestern University

STEFAN CATOIU, Ph.D.,
Associate Professor
University of Wisconsin

WILLIAM CHIN, Ph.D.,
Professor
University of Wisconsin

JONATHAN COHEN, Ph.D.,
Professor
Washington University

BARBARA CORTZEN, Ph.D.,
Associate Professor
University of California, San Diego

DAVID DEGRAS-VELABREGUE
Assistant Professor
Université Paris 6, France

CHRISTOPHER DRUPIESKI, Ph.D.,
Assistant Professor
University of Virginia

SUSANNA EPP, Ph.D.,
Professor
University of Chicago

A. EDUARDO GATTO, Ph.D.,
Associate Professor
Universidad de Buenos Aires

CONSTANTINE GEORGAKIS, Ph.D.,
Associate Professor
Illinois Institute of Technology

LAWRENCE GLUCK, Ph.D.,
Associate Professor
Illinois Institute of Technology

YEVGENIA KASHINA, Ph.D.,
Associate Professor
University of Southern California

LEONID KROP, Ph.D.,
Associate Professor
University of Chicago

CAROLYN NARASIMHAN, Ph.D.,
Professor
Northwestern University

T. KYLE PETERSEN, Ph.D.,
Assistant Professor
Brandeis University

NICHOLAS RAMSEY, Ph.D.,
Assistant Professor
Harvard University

AYSE SAHIN, Ph.D.,
Professor
University of Maryland, College Park

CLAUDIA SCHMEGNER, Ph.D.,
Assistant Professor
University of Texas, Dallas

STEPHEN A. STANHOPE, Ph.D.,
Assistant Professor
University of Wisconsin-Madison

BRIDGET TENNER, Ph.D.,
Associate Professor
Massachusetts Institute of Technology

ILIE UGARCOVICI, Ph.D.,
Associate Professor
Pennsylvania State University

GANG WANG, Ph.D.,
Professor
University of Illinois at Urbana-Champaign
Major Requirements

CONCENTRATIONS

Mathematical Sciences students must declare at least one Mathematical Sciences concentration. If the student chooses to declare more than one Mathematical Sciences concentration, then the student must complete the requirements for each concentration, and take at least three additional 300-level courses overall. For example, a student earning two concentrations would have taken at least nine 300-level courses, and a student earning three concentrations would have taken at least twelve 300-level courses.

Liberal Studies Requirements
Departmental Requirements
B.A. in Mathematical Sciences
B.S. in Mathematics and Computer Science

Liberal Studies Requirements

<table>
<thead>
<tr>
<th>First Year Program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago Quarter</td>
<td>LSP 110 or LSP 111</td>
</tr>
<tr>
<td>Focal Point</td>
<td>LSP 112</td>
</tr>
<tr>
<td>Writing</td>
<td>WRD 103* and WRD 104*</td>
</tr>
</tbody>
</table>

| Quantitative Reasoning & Technological Literacy | Not Required |

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiculturalism in the US</td>
<td>LSP 200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiential Learning</td>
<td>Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capstone</td>
<td>Required*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning Domains</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Literature (AL)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Philosophical Inquiry (PI)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Scientific Inquiry (SI)</td>
<td>1 Lab Course Required</td>
</tr>
<tr>
<td>Self, Society and the Modern World (SSMW)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Religious Dimensions (RD)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Understanding the Past (UP)</td>
<td>2 Courses Required</td>
</tr>
</tbody>
</table>

Note: * Students must earn a C- or better in this course.

Note: Courses offered in the student's primary major cannot be taken to fulfill LSP Domain requirements. If students double major, LSP Domain courses may double count for both LSP credit and the second major. Students who choose to take an experiential learning course offered by the major may count it either as a general elective or the JYEL requirement.

In meeting learning domain requirements, no more than one course that is outside the students major and is cross-listed with a course within the students major, can be applied to count for LSP domain credit. This policy would apply only to those students in pursuit of a BA or BS degree, and not to those who are double majors or earning BFA or BM degrees.
Departmental Requirements

The Department of Mathematical Sciences enforces all course prerequisites including course placement by the Mathematics Diagnostic Test. Mathematics majors must complete mathematics course prerequisites with a grade of C- or better. This requirement may be waived only with the consent of the chair of the department.

In planning schedules, students should be aware that not all courses are offered every quarter. Some sequences start only in fall or winter quarters, and some 300 level courses are not offered every year. Students should consult with their advisors and the department to develop a program that they can complete in a timely fashion.

B.A. in Mathematical Sciences

COMMON CORE
Mathematics Requirements:

- 160, 161, 162 Calculus for Mathematics and Science Majors I, II, III, or 150, 151, 152 Calculus I, II, III, or 147, 148, 149 Calculus with Integrated Precalculus, or 170, 171 Calculus I and II with Scientific applications and 149, 152 or 162
- 260, 261 Multivariable Calculus I and II, 262 Linear Algebra.
- 215 Introduction to Mathematical Reasoning or both 140 and 141 Discrete Mathematics I and II

Allied Field Courses:
Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

- CSC 241 Introduction to Computer Science I, or a more advanced course in any programming language.

I. PURE MATHEMATICS CONCENTRATION

Requirements:
Common Core plus:

At least three courses to be chosen from among 310, 311 (Abstract Algebra I, II) and 335, 336 (Real Analysis I, II).

Three additional mathematics courses can be chosen from the following: MAT 301 History of Mathematics; MAT 302 Combinatorics; MAT 303 Theory of Numbers; MAT 311-312 Abstract Algebra II and III; MAT 320-321 Geometry I and II; MAT 336 Real Analysis II; MAT 337 Complex Analysis; MAT 304 Differential Equations; MAT 340 Topology; MAT 348 Applied Statistical Methods; MAT 351-352-353 Probability and Statistics I, II, and III; MAT 370 Advanced Linear Algebra; MAT 372 Logic and Set Theory; MAT 385-386 Numerical Analysis I and II.

Recommended Mathematics Courses:
Students interested in graduate study in mathematics are encouraged to take both sequences 310-311-312 and 335-336-337. Students interested in graduate study in economics, finance, or statistics are encouraged to take 351-352-353 and 335-336.

II. STATISTICS CONCENTRATION

Requirements:
Common Core plus:

OR

Additional Recommended Courses:

III. ACTUARIAL SCIENCE CONCENTRATION

Requirements:
Common Core plus:

• 351, 352, 353 Probability and Statistics I, II, III.
• 361, 362, 363 Actuarial Science I, II, III.

Recommended Mathematics Courses:

Additional Recommended Courses:
Accountancy: ACC 101 Introduction to Accounting I.

Economics: ECO 105 Principles of Microeconomics; 106 Principles of Macroeconomics.

IV. TEACHER OF MATHEMATICS: SECONDARY LEVEL CONCENTRATION

In cooperation with the School of Education, the Department of Mathematics offers concentrations of study which combine the requirements for a major in Mathematics with certification for teaching mathematics at the middle and high school levels. A student electing such a program should consult the School of Education Counselor as soon as possible after entering DePaul. At the present time students who satisfy all the requirements in this program earn their degree in secondary education through the School of Education. In addition to fulfilling the requirements listed below, students in this program must meet the requirements from the School of Education.

Requirements:
Common Core plus:

301 History of Mathematics.
348 Applied Statistical Methods or 351 Probability and Statistics I.
303 Number Theory and 310 Abstract Algebra I, or 310 and 311 Abstract Algebra I-II.
320 and 321 Geometry I-II, or 320 Geometry I and 335 Real Analysis I

V. FINANCIAL MATHEMATICS CONCENTRATION

This concentration is a Mathematics Major that is attached to a Finance Minor. It includes courses that are relevant to contemporary financial mathematical modeling, along with courses in Finance and their prerequisites. The Finance Minor is designed to complement the mathematics coursework.

Mathematics Major Requirements:
Common Core plus:

Finance Minor Requirements:
Accountancy: ACC 101 and 102 Introduction to Accounting I and II;

Economics:
ECO 105 Principles of Microeconomics, ECO 106 Principles of Macroeconomics;

Finance:
- FIN 202 Quantitative Reasoning, FIN 310 Introduction to Finance, FIN 311 Corporate Finance, FIN 320 Money and Banking, FIN 330 Investments: Theory and Practice

Additional Recommended Courses:

VI. QUANTITATIVE ANALYSIS AND OPERATIONS RESEARCH CONCENTRATION

Requirements:
Common Core plus:
351, 352, 353 Probability and Statistics I, II, III.

Additional recommended courses:
Accountancy: ACC 101, 102 Introduction to Accounting I and II;

Economics: ECO 105 Principles of Microeconomics, ECO 106 Principles of Macroeconomics;

VII. APPLIED AND COMPUTATIONAL MATHEMATICS CONCENTRATION
The concentration in Applied and Computational Mathematics is intended for any student who enjoys mathematics, problem solving, and applications to solving practical problems in business, government, and science. The concentration is especially intended for students seeking a career as quantitative analysts, computational scientists, and applied mathematicians, and for those thinking of continuing the study of applied or discrete mathematics at the graduate level.

Requirements:
Common Core plus: Three courses chosen from 302 Combinatorics, 304 Differential Equations, 384 Mathematical Modeling, 385 Numerical Analysis I.

Two additional courses chosen from among the above and the following:
335 Real Analysis I, 351-352 Probability and Statistics I, II, 370 Advanced Linear Algebra, 381 Fourier Series, 386 Numerical Analysis II.

One additional course chosen from among the above and the following:

Students interested in graduate study in applied mathematics are encouraged to take 335-336, 370, 385-386.

Allied Field Courses:
Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.
- CSC 242 Introduction to Computer Science II, or another approved computer science course.

VIII. INDIVIDUALIZED CONCENTRATION
Students may consult with a mathematics faculty advisor and the department chair to create an
Students may consult with a mathematics faculty advisor and the department chair to create an individualized program of study leading to a degree in mathematics. Such a program will normally consist of the Common Core in Mathematics plus six mathematics courses chosen from those included in concentrations I-VII above and approved by the department chair.

B.S. in Mathematical Science

COMMON CORE
Mathematics Requirements:
- 160, 161, 162 Calculus for Mathematics and Science Majors I, II, III, or 150, 151, 152 Calculus I, II, III, or 147, 148, 149 Calculus with Integrated Precalculus, or 170, 171 Calculus I and II with Scientific applications and 149, 152 or 162
- 260, 261 Multivariable Calculus I and II, 262 Linear Algebra.
- 215 Introduction to Mathematical Reasoning or both 140 and 141 Discrete Mathematics I and II

Allied Field Courses:
Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.
- CSC 241 Introduction to Computer Science I, or a more advanced course in any programming language.

SCIENCE REQUIREMENT
For a B.S. degree in Mathematics, in addition to fulfilling the requirements for one of the concentrations below, students must earn at least 16 quarter hours in the natural or computer sciences.

I. PURE MATHEMATICS CONCENTRATION
Requirements:
Common Core plus:
At least three courses to be chosen from among 310, 311 (Abstract Algebra I, II) and 335, 336 (Real Analysis I, II).

Three additional mathematics courses can be chosen from the following: MAT 301 History of Mathematics; MAT 302 Combinatorics; MAT 303 Theory of Numbers; MAT 311-312 Abstract Algebra II and III; MAT 320-321 Geometry I and II; MAT 336 Real Analysis II; MAT 337 Complex Analysis; MAT 304 Differential Equations; MAT 340 Topology; MAT 348 Applied Statistical Methods; MAT 351-352-353 Probability and Statistics I, II, and III; MAT 370 Advanced Linear Algebra; MAT 372 Logic and Set Theory; MAT 385-386 Numerical Analysis I and II.

Recommended Mathematics Courses:
Students interested in graduate study in mathematics are encouraged to take both sequences 310-311-312 and 335-336-337. Students interested in graduate study in economics, finance, or statistics are encouraged to take 351-352-353 and 335-336.

II. STATISTICS CONCENTRATION
Requirements:
Common Core plus:

OR

Additional Recommended Courses:
statistics are encouraged to take the entire sequences 351-352-353 and 335-336.

III. ACTUARIAL SCIENCE CONCENTRATION
Requirements:
Common Core plus:

- 351, 352, 353 Probability and Statistics I, II, III.
- 361, 362, 363 Actuarial Science I, II, III.

And at least three of the following Mathematics Courses:

Additional Recommended Courses:
Accountancy: ACC 101 Introduction to Accounting I.

Economics: ECO 105 Principles of Microeconomics; 106 Principles of Macroeconomics.

IV. TEACHER OF MATHEMATICS: SECONDARY LEVEL CONCENTRATION

In cooperation with the School of Education, the Department of Mathematics offers concentrations of study which combine the requirements for a major in Mathematics with certification for teaching mathematics at the middle and high school levels. A student electing such a program should consult the School of Education Counselor as soon as possible after entering DePaul. At the present time students who satisfy all the requirements in this program earn their degree in secondary education through the School of Education. In addition to fulfilling the requirements listed below, students in this program must meet the requirements from the School of Education.

Requirements:
Common Core plus:
301 History of Mathematics.
348 Applied Statistical Methods or 351 Probability and Statistics I.
303 Number Theory and 310 Abstract Algebra I, or 310 and 311 Abstract Algebra I-II.
320 and 321 Geometry I-II, or 320 Geometry I and 335 Real Analysis I

V. FINANCIAL MATHEMATICS CONCENTRATION

This concentration is a Mathematics Major that is attached to a Finance Minor. It includes courses that are relevant to contemporary financial mathematical modeling, along with courses in Finance and their prerequisites. The Finance Minor is designed to complement the mathematics coursework.

Mathematics Major Requirements:
Common Core plus:

Finance Minor Requirements:
Accountancy: ACC 101 and 102 Introduction to Accounting I and II;

Economics: ECO 105 Principles of Microeconomics, ECO 106 Principles of Macroeconomics;

Finance:
- FIN 202 Quantitative Reasoning, FIN 310 Introduction to Finance, FIN 311 Corporate Finance, FIN 320 Money and Banking, FIN 330 Investments: Theory and Practice
Additional Recommended Courses:

VI. QUANTITATIVE ANALYSIS AND OPERATIONS RESEARCH CONCENTRATION

Requirements:
Common Core plus:
351, 352, 353 Probability and Statistics I, II, III.

Additional recommended courses:
Accountancy: ACC 101, 102 Introduction to Accounting I and II;

Economics: ECO 105 Principles of Microeconomics, ECO 106 Principles of Macroeconomics;

VII. APPLIED AND COMPUTATIONAL MATHEMATICS CONCENTRATION

The concentration in Applied and Computational Mathematics is intended for any student who enjoys mathematics, problem solving, and applications to solving practical problems in business, government, and science. The concentration is especially intended for students seeking a career as quantitative analysts, computational scientists, and applied mathematicians, and for those thinking of continuing the study of applied or discrete mathematics at the graduate level.

Requirements:
Common Core plus: Three courses chosen from 302 Combinatorics, 304 Differential Equations, 384 Mathematical Modeling, 385 Numerical Analysis I.

Two additional courses chosen from among the above and the following:
335 Real Analysis I, 351-352 Probability and Statistics I, II, 370 Advanced Linear Algebra, 381 Fourier Series, 386 Numerical Analysis II.

One additional course chosen from among the above and the following:

Students interested in graduate study in applied mathematics are encouraged to take 335-336, 370, 385-386.

Allied Field Courses:
Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

- A second quarter of Python, or another approved computer science course.

VIII. INDIVIDUALIZED CONCENTRATION

Students may consult with a mathematics faculty advisor and the department chair to create an individualized program of study leading to a degree in mathematics. Such a program will normally consist of the Common Core in Mathematics plus six mathematics courses chosen from those included in concentrations I-VII above and approved by the department chair.
Mathematics is a key element to the theory and practice of computer science and technology:

- Number theory forms the basis for encryption algorithms for messages sent over the Internet.
- Facts from projective geometry and multivariable calculus underlie the computer algorithms that control computer animation.
- Properties of abstract groups are instrumental in correcting transmission errors that occur when information is sent from one computer to another.
- Graph theory and combinatorics are used to create algorithms for Internet search engines and analyze Internet routing protocols.

This joint major program is intended to appeal to academically talented students. It is designed to prepare them for graduate study in various areas of computer science such as theoretical computer science, graphics, data analysis, artificial intelligence, and computational methods and in areas in applied mathematics such as numerical analysis or discrete mathematics. The program is also designed to prepare students to compete for the more theoretical complex jobs found in computer software development.

PROGRAM REQUIREMENTS

The BS in Mathematics and Computer Science consists of five parts:

- The Liberal Studies Program (19 Courses, not including the capstone course)
- Core Courses (14 Courses)
- Advanced Classes (7 Courses)
- Capstone (1 course)
- Open Electives (7 Courses)

The courses in the Core build the necessary foundation in discrete and continuous mathematics, problem solving, algorithmic thinking and programming. The Advanced Classes allow the student to explore the different areas of mathematics and computer science in more depth.

CORE COURSES (14 Courses):

Mathematical Foundations
- MAT 150-151-152, or MAT 160-161-162, or MAT 170-171-172
- Calculus I, II, & III (MAT 147-148-149 may also be used to satisfy this requirement.)
- MAT 140-141 Discrete Mathematics I & II
- MAT 260 Multivariable Calculus I
- MAT 262 Linear Algebra

Problem Solving, Algorithms and Structured Programming
- CSC 241 Introduction to Computer Science I
- CSC 242 Introduction to Computer Science II
- CSC 321 Design and Analysis of Algorithms
- CSC 301 Data Structures in C++ or
- CSC 393 Data Structures and Algorithms in Java

Object-Oriented Programming
- CSC 300 Data Structures in Java I or
- CSC 309 Object-Oriented Programming in C

Computer Systems
- CSC 373 Introduction to Systems I
- CSC 374 Introduction to Systems II

ADVANCED COURSES (7 courses):

The students can choose advanced computer science and mathematics classes from different areas including theory of computation, computational mathematics, artificial intelligence, data analysis, graphics, and computer vision. It is recommended that students concentrate on one or two areas for their advanced classes to achieve depth, but they are not required to do so. Students are strongly encouraged to discuss course selection with an advisor.

Students choose seven courses from the following area lists. At least three of the courses have to be in computer science (or graphics) and at least three in mathematics. Courses not on this list need to be approved
by an advisor. In particular, students may wish to arrange with a professor to take an independent study or a research experience (MAT 399 or CSC 399 or IT 300) in order to explore a subject more deeply than is possible in a scheduled course.

CONCENTRATIONS

I. Theory of Computation Area

The courses in the theory area explore the mathematical and logical foundations of computer science.

MAT 302 Combinatorics
MAT 303 Number Theory
MAT 351 Probability and Statistics I
MAT 310 Abstract Algebra I
MAT 311 Abstract Algebra II
MAT 312 Abstract Algebra III
MAT 335 Real Analysis
MAT 372 Logic and Set Theory
CSC 235 Problem Solving
CSC 327 Problem Solving for Contests
CSC 333 Cryptology
CSC 344 Automata Theory and Formal Grammars
CSC 347 Introduction to Programming Languages
CSC 348 Compiler Design
CSC 387/MAT 387 Operations Research I
CSC 389 Theory of Computation
CSC 358 Symbolic Programming

II. Computational Methods Concentration

The computational methods area investigates quantitative and computational methods in computer science.

CSC 331 Scientific Computing
CSC 385/MAT 385 Numerical Analysis
CSC 386/MAT 386 Advanced Numerical Analysis
MAT 330 Methods of Computation and Theoretical Physics I
MAT 331 Methods of Computation and Theoretical Physics II
MAT 384 Mathematical Modeling

III. Artificial Intelligence Concentration

For students with an interest in the computational relations between syntax and semantics.

CSC 357 Expert Systems
CSC 358 Symbolic Programming
CSC 380 Artificial Intelligence

IV. Data Analysis Concentration

For students who are interested in statistical and computational analysis of data. Many of the courses in this area require the student to take MAT 351–353.

CSC 328 Data Analysis for Experimenters
CSC 334 Advanced Data Analysis or
MAT 354 Multivariate Statistics
CSC 332 Simulation and Modeling or
MAT 359 Simulation Models & Monte Carlo Methods
CSC 367 Introduction to Data Mining
MAT 261 Multivariable Calculus II
MAT 351-353 Probability & Statistics I, II, & III
MAT 355 Stochastic Processes
MAT 357 Nonparametric Statistics
MAT 370 Advanced Linear Algebra
MAT 356 Applied Regression Analysis
MAT 358 Applied Time Series and Forecasting
V. Graphics Concentration

The graphics courses are intended for students who want to study the technical and mathematical foundations of computer graphics and animation.

MAT 261 Multivariable Calculus II
MAT 337 Complex Analysis
MAT 370 Advanced Linear Algebra
CSC 385/MAT 385 Numerical Analysis I
GPH 211 Perceptual Principles for Digital Environments I
GPH 212 Perceptual Principles for Digital Environments II
GPH 325 Survey of Computer Graphics
GPH 329 Computer Graphics Development
GPH 339 Advanced Rendering Techniques
GPH 336 Advanced Modeling Techniques
GPH 372 Principles of Animation

VI. Computer Vision Concentration

Computer vision studies the mathematical and algorithmic underpinnings of image analysis and image processing.

MAT 261 Multivariable Calculus II
MAT 335 Real Analysis
MAT 381 Fourier Analysis and Special Functions
MAT 370 Advanced Linear Algebra
MAT 384 Mathematical Modeling
CSC 381 Pattern Recognition and Image Processing
CSC 382 Applied Image Analysis
CSC 384 Introduction to Computer Vision

CAPSTONE COURSE (1 course):

Students can choose one course from the following capstone courses, depending on their interest and coursework:

CSC 394 Software Projects
GPH 395 Computer Graphics Senior Project
MAT 398 Senior Capstone Seminar

Students need to make sure that they cover all prerequisites of their respective capstone (possibly using open electives).

OPEN ELECTIVES (7 courses):

Students choose seven (7) open electives. Open Electives may be taken from any department or program. These are the only courses that may be taken under the pass/fail option (see the undergraduate Bulletin for details). If you wish to pursue a minor, most minor field courses will be credited as open electives.

College of Science and Health - Undergraduate Studies ▶ Programs of Study ▶ Mathematical Sciences ▶ Minor Requirements

Minor Requirements

MATHEMATICS MINOR

Students in other departments may earn a minor in mathematics.

Requirements:

- 160, 161, 162 Calculus for Mathematics and Science Majors I, II, III, or 150, 151, 152 Calculus I, II, III, or
147, 148, 149 Calculus with Integrated Precalculus, or 170, 171, 172, Calculus I, II, III with Scientific Applications.
- 215 Introduction to Mathematical Reasoning or both 140 and 141 Discrete Mathematics I and II.
- Two additional mathematics courses chosen from the 200 or 300-level courses which are admissible for credit as part of the common core or as part of one of the concentrations in mathematics.

Commerce students who have an exceptionally strong background in calculus, including calculus of trig functions, may be permitted by the chair to substitute MAT 135 and 136 for MAT 150 and 151.

STATISTICS MINOR
Students in other departments may earn a minor in statistics.

Requirements:
- 348 and 349 Applied Statistical Methods I and II.
- One of the following courses: 326 Sample Survey Methods, 328 Design of Experiments, 356 Applied Regression Analysis, or 357 Nonparametric Statistics.

Commerce students who have an exceptionally strong background in calculus, including calculus of trig functions, may be permitted by the chair to substitute MAT 135 and MAT 136 for MAT 150 and 151.

Special Programs

COMBINED BACHELOR AND MASTER OF SCIENCE DEGREES IN APPLIED MATHEMATICS OR IN APPLIED STATISTICS

The combined B.S./M.S. degree in applied mathematics or applied statistics allow students to earn both a B.S. in mathematics and either an M.S. in applied mathematics or an M.S. in applied statistics. The program in applied mathematics is designed for undergraduate mathematics students in one of the following concentrations: statistics or actuarial science. The program in applied statistics is intended for undergraduate students who seek a more specialized focus on statistical methodology and application. It is expected that students will complete the Common Core in mathematics by the end of the sophomore year, will begin taking graduate-level courses during the senior year and will complete the requirements for the Master's of Science in Applied Mathematics or the Master's of Science in Applied Statistics approximately one year after satisfying the requirements for the B.S. degree.

To be admitted to this program, students must submit a letter of intent to the program director, no later than the beginning of the junior year. Careful planning of course sequencing in these programs is essential. A maximum of 12 graduate quarter hours, taken while undergraduate, with grade of B or better may be counted toward the M.S. degree. Near the completion of the graduate course work, students are expected to take two sets of comprehensive examinations.

For more details, please visit the department website.

UNDERGRADUATE REQUIREMENTS

Common core plus
- **MAT 451-452-453**, Probability and Statistics I, II and III
- Three courses chosen from :
 - MAT 304, Differential Equations
 - MAT 335-336, Real Analysis I and II
 - MAT 337, Complex Analysis
 - MAT 354, Multivariate Statistics
 - MAT 355, Stochastic Processes
 - MAT 357, Nonparametric Statistics
 - MAT 370, Advanced Linear Algebra
MAT 385, Numerical Analysis
MAT 387, Operations Research I
(Note: MAT 335 is strongly recommended.)

Recommended Computer Courses:
CSC 241 Introduction to Computer Science I, or a more advanced course in any programming language.

GRADUATE REQUIREMENTS

Applied Mathematics: Statistics Concentration

- MAT 448, Statistical Methods using SAS
- MAT 456, Applied Regression Analysis
- MAT 459, Simulation and the Monte Carlo Method
- MAT 526, Sample Survey Methods; and
- MAT 528, Design of Experiments
- Four electives from the following graduate courses (provided they were not taken while undergraduate):
 - MAT 454, Multivariate Statistics
 - MAT 455, Stochastic Processes
 - MAT 457, Nonparametric Statistics
 - MAT 458, Statistical Quality Control
 - MAT 460, Topics in Statistics
 - MAT 470, Advanced Linear Algebra
 - MAT 485, Numerical Analysis I
 - MAT 512, Applied Time Series and Forecasting

Applied Mathematics: Actuarial Science Concentration

- MAT 461-462-463, Actuarial Science I, II and III
- MAT 456, Applied Regression Analysis
- MAT 459, Simulation and the Monte Carlo Method
- MAT 448, Statistical Methods using SAS
- Three electives from the following graduate courses (provided they were not taken while undergraduate):
 - MAT 455, Stochastic Processes
 - MAT 464, Stochastic Risk Models
 - MAT 465, Statistical Survival Models
 - MAT 466, Mathematical Demography
 - MAT 467, Credibility Theory
 - MAT 468, Financial Models
 - MAT 470, Advanced Linear Algebra
 - MAT 485, Numerical Analysis I
 - MAT 512, Applied Time Series and Forecasting

Applied Statistics

- MAT 441, Statistical Data Analysis with SAS-I
- MAT 442, Statistical Data Analysis with SAS-II
- MAT 443, Statistical Data Analysis with SAS-III
- MAT 456, Applied Regression Analysis
- MAT 512, Applied Time Series and Forecasting
- MAT 526, Sample Survey Methods; and
- MAT 528, Design of Experiments
- Two electives from the following graduate courses (provided they were not taken while undergraduate):
 - MAT 454, Multivariate Statistics
 - MAT 455, Stochastic Processes
 - MAT 457, Nonparametric Statistics
 - MAT 458, Statistical Quality Control
 - MAT 459, Simulation and the Monte Carlo Method
 - MAT 460, Topics in Statistics
 - MAT 470, Advanced Linear Algebra
 - MAT 485, Numerical Analysis I

ADDITIONAL NOTES
Students choosing the B.S./M.S. in Applied Mathematics or Applied Statistics should take the core calculus courses as early in their programs as practicable. Students needing to take one or more of the mathematics courses that are prerequisite to calculus are especially urged to satisfy these requirements as soon as possible.

Students placing into MAT 131 are encouraged to take MAT 147-148-149 so as to complete the full year of calculus by the end of Spring Quarter. A possible alternative is to take MAT 131 concurrently with MAT 150-160-170.

MAT 215 is offered in the winter and spring quarter of each year.

Students may take MAT 335 concurrently with MAT 260 provided they have previously taken either MAT 141 or MAT 215.

It is recommended that undergraduate actuarial science students take as electives selected courses from Accountancy 101, Business Law 201, Economics 105-106, Finance 310, and Finance 330.

Students should apply for graduation with B.S. or B.A. during their senior year. Further, they should formally fill out an application for admission to the graduate program and indicate in the application that they are enrolled in the combined B.S./M.S. program.

Approval of the student's graduate advisor is required for all graduate electives.

With the approval of the program director, students may choose to take other graduate courses that are not included in the above lists.

Students are expected to fulfill all requirements for the Master's of Science in Applied Mathematics or Applied Statistics, including the comprehensive examinations.

COMBINED B.S. (B.A.)/M.S. IN PURE MATHEMATICS

The combined B.S. (B.A.)/M.S. degree in Pure Mathematics allow promising undergraduate students to earn both a B.S. or B.A. in Mathematics and a M.S. in Pure Mathematics within about one year after the completion of the Bachelor degree. The program is designed for undergraduate mathematics majors in the Pure Mathematics concentration. It is expected that students will complete the Common Core in Mathematics by the end of the sophomore year, will begin taking some graduate-level courses during the senior year, and will complete the requirements for the Master of Science in Pure Mathematics degree in approximately one year after earning the Bachelor's degree.

To be admitted to this program, students should apply to the program director in their third year (junior class standing) of undergraduate study. Careful planning of course sequencing in this program is essential. A maximum of 12 quarter hours taken at the graduate level while undergraduate may be double-counted toward the B.S. (B.A.) and M.S. degrees provided the grades are B or better.

To be considered for admission, interested students must submit the Combined Program Application form to the Office of Advising and Student Services for review. All application materials for the traditional graduate program are required but may be waived at the program director's discretion. Please visit the Mathematical Sciences Department's website.

UNDERGRADUATE REQUIREMENTS

Common core plus:

- MAT 310 Abstract Algebra I
- MAT 311 Abstract Algebra II
- MAT 335 Real Analysis I
- MAT 336 Real Analysis II

Students should also take three out of the twelve graduate courses while they are undergraduate.

GRADUATE REQUIREMENTS

All students in the program are required to complete the following eight core courses:

- MAT 470 Advanced Linear Algebra
- MAT 471 Group Theory
- MAT 472 Fields and Galois Theory
- MAT 473 Rings and Modules
- MAT 434 Topology
- MAT 435 Measure Theory
- MAT 436 Functional Analysis
- MAT 437 Complex Analysis
In addition, students must complete at least sixteen quarter hours of graduate coursework, selected from the following elective courses:

- MAT 451 Probability and Statistics I
- MAT 452 Probability and Statistics II
- MAT 453 Probability and Statistics III
- MAT 481 Fourier Analysis and Special topics
- MAT 484 Mathematical Modeling
- MAT 485 Numerical Analysis I
- MAT 486 Numerical Analysis II
- MAT 494 Graph Theory and Network Flows
- MAT 498 Problem Solving in Mathematics
- MAT 596 Advanced Topics in Algebra
- MAT 597 Advanced Topics in Analysis
- MAT 598 Advanced Problem Solving in Algebra and Analysis

With advisor’s approval two of the elective courses can be substituted with graduate courses in allied fields, such as Computer Science, Physics, or Mathematical Education.

In addition, students should pass two comprehensive examinations in Algebra and Analysis.

Courses

Please visit Campus Connection at https://campusconnect.depaul.edu for current course information. If you do not have a password for Campus Connection you may log on as a guest. Once you are on Campus Connection please select Course Descriptions followed by the department.

Foundation
MAT 94 Computational Skills
MAT 95 Basic Applied Algebra
MAT 100 Introduction to Quantitative Reasoning
MAT 101 Introduction to College Algebra
MAT 130 College Algebra and Precalculus
MAT 131 Trigonometry and Precalculus Foundation
MAT 135 Business Calculus I
MAT 136 Business Calculus II
MAT 140 Discrete Mathematics I
MAT 141 Discrete Mathematics II
MAT 145 Calculus for Information Systems
MAT 147 Calculus with Integrated Precalculus I
MAT 148 Calculus with Integrated Precalculus II
MAT 149 Calculus with Integrated Precalculus III
MAT 150 Calculus I
MAT 151 Calculus II
MAT 152 Calculus III
MAT 160 Calculus for Mathematics and Science Majors I
MAT 161 Calculus for Mathematics and Science Majors II
MAT 162 Calculus for Mathematics and Science Majors III
MAT 170 Calculus I with Scientific Applications
MAT 171 Calculus II with Scientific Applications
MAT 172 Calculus III with Differential Equations
MAT 215 Introduction to Mathematical Reasoning
MAT 220 Linear Algebra with Applications
MAT 260 Multivariable Calculus I
MAT 261 Multivariable Calculus II
MAT 262 Linear Algebra

Actuarial Science
<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 361 Actuarial Science I</td>
<td></td>
</tr>
<tr>
<td>MAT 362 Actuarial Science II</td>
<td></td>
</tr>
<tr>
<td>MAT 363 Actuarial Science III</td>
<td></td>
</tr>
<tr>
<td>MAT 364 Stochastic Risk Models</td>
<td></td>
</tr>
<tr>
<td>MAT 365 Statistical Survival Models</td>
<td></td>
</tr>
<tr>
<td>MAT 366 Mathematical Demography</td>
<td></td>
</tr>
<tr>
<td>MAT 367 Credibility Theory</td>
<td></td>
</tr>
<tr>
<td>Algebra and Number Theory</td>
<td></td>
</tr>
<tr>
<td>MAT 302 Combinatorics</td>
<td></td>
</tr>
<tr>
<td>MAT 303 Theory of Numbers</td>
<td></td>
</tr>
<tr>
<td>MAT 310 Abstract Algebra I</td>
<td></td>
</tr>
<tr>
<td>MAT 311 Abstract Algebra II</td>
<td></td>
</tr>
<tr>
<td>MAT 312 Abstract Algebra III</td>
<td></td>
</tr>
<tr>
<td>MAT 370 Advanced Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MAT 372 Logic and Set Theory</td>
<td></td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td></td>
</tr>
<tr>
<td>MAT 330 Methods of Computation and Theoretical Physics I</td>
<td></td>
</tr>
<tr>
<td>MAT 331 Methods of Computation and Theoretical Physics II</td>
<td></td>
</tr>
<tr>
<td>MAT 384 Mathematical Modeling</td>
<td></td>
</tr>
<tr>
<td>MAT 385 Numerical Analysis I</td>
<td></td>
</tr>
<tr>
<td>MAT 386 Numerical Analysis II</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>MAT 110 Foundations of Mathematics for Elementary School Teachers I</td>
<td></td>
</tr>
<tr>
<td>MAT 111 Foundations of Mathematics for Elementary School Teachers II</td>
<td></td>
</tr>
<tr>
<td>MAT 115 Foundations of Mathematics for Elementary School Teachers III</td>
<td></td>
</tr>
<tr>
<td>MAT 295 Functions and Graphs for Teachers</td>
<td></td>
</tr>
<tr>
<td>MAT 296 Trigonometric Functions and Analytic Geometry for Teachers</td>
<td></td>
</tr>
<tr>
<td>MAT 309 Teaching and Learning Secondary School</td>
<td></td>
</tr>
<tr>
<td>Mathematics History</td>
<td></td>
</tr>
<tr>
<td>MAT 301 History of Mathematics</td>
<td></td>
</tr>
<tr>
<td>Geometry and Topology</td>
<td></td>
</tr>
<tr>
<td>MAT 320 Geometry I</td>
<td></td>
</tr>
<tr>
<td>MAT 321 Geometry II</td>
<td></td>
</tr>
<tr>
<td>MAT 340 Topology</td>
<td></td>
</tr>
<tr>
<td>Mathematical Analysis</td>
<td></td>
</tr>
<tr>
<td>MAT 304 Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MAT 335 Real Analysis I</td>
<td></td>
</tr>
<tr>
<td>MAT 336 Real Analysis II</td>
<td></td>
</tr>
<tr>
<td>MAT 337 Complex Analysis</td>
<td></td>
</tr>
<tr>
<td>Operations Research</td>
<td></td>
</tr>
<tr>
<td>MAT 387 Operations Research I: Linear Programming</td>
<td></td>
</tr>
<tr>
<td>MAT 388 Operations Research II: Optimization Theory</td>
<td></td>
</tr>
<tr>
<td>Statistics and Probability</td>
<td></td>
</tr>
<tr>
<td>MAT 137 Business Statistics</td>
<td></td>
</tr>
<tr>
<td>MAT 242 Elements of Statistics</td>
<td></td>
</tr>
<tr>
<td>MAT 323 Data Analysis and Statistical Software I</td>
<td></td>
</tr>
<tr>
<td>MAT 324 Data Analysis and Statistical Software II</td>
<td></td>
</tr>
<tr>
<td>MAT 326 Sample Survey Methods</td>
<td></td>
</tr>
<tr>
<td>MAT 328 Design of Experiments</td>
<td></td>
</tr>
<tr>
<td>MAT 341 Statistical Methods Using SAS</td>
<td></td>
</tr>
<tr>
<td>MAT 342 Elements of Statistics II</td>
<td></td>
</tr>
<tr>
<td>MAT 348 Applied Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>MAT 349 Applied Statistical Methods II</td>
<td></td>
</tr>
<tr>
<td>MAT 351 Probability and Statistics I</td>
<td></td>
</tr>
<tr>
<td>MAT 352 Probability and Statistics II</td>
<td></td>
</tr>
<tr>
<td>MAT 353 Probability and Statistics III</td>
<td></td>
</tr>
</tbody>
</table>
Physics

Introduction

The Department of Physics offers courses and concentrations designed to teach students about the fundamental processes that govern our universe. Students interested in majoring in physics can choose from several concentrations.

The Standard Physics concentration provides a curriculum that highlights the core areas of theoretical and experimental physics. The Computational Physics concentration provides a curriculum that emphasizes the use of computer simulations as a tool to visualize and understand natural phenomena.

In both concentrations student participation in faculty research is an important component of the program that prepares students for independent work in graduate school or industry. Each concentration also prepares students for graduate study, either in physics or in applied sciences such as optics, photonics, scientific computing, engineering, or computer science.

For students interested in engineering, the Physics Department offers a concentration in Engineering Physics. In this concentration, students take courses in physics at DePaul and engineering courses at another university, leading to degrees in both Physics and Engineering. Through a joint program with the Illinois Institute of Technology, students can complete a five-year dual-degree program while remaining full-time DePaul students.

Additionally, students who are interested in engineering but who are not interested in the dual degree program will have the scientific basis to complete an engineering program at another institution after the first two years of the physics major curriculum at DePaul.

For students who wish to apply a physics degree to a career outside of physics, the Department of Physics offers a concentration called Interdisciplinary Physics. This concentration combines a major in physics with a minor in a second field of the student's choosing. A program in secondary-teacher education, offered in conjunction with the School of Education, is also available for students who wish to teach physics at the high school level.

Student participation in faculty research is an important component of the Physics program at all levels. Participation in research can be pursued either through independent study during the academic year or full-time during the summer quarter. Such experience is excellent preparation for independent work in graduate school or industry.
Faculty

JESUS PANDO
Associate Professor and Chair
University of Arizona

GEORGE CORSO, Ph.D.
Instructor
Northwestern University

SUSAN M. FISCHER, Ph.D.
Associate Professor
University of Notre Dame

CHRISTOPHER G. GOEDDE, Ph.D.
Professor
University of California, Berkeley

JOHN GOLDMAN, M.S.
Instructor
Pennsylvania State University

GABRIELA GONZALEZ-AVILES, Ph.D.
Assistant Professor
Northwestern University

ERIC C. LANDAHL, Ph.D.
Assistant Professor
University of California, Davis

W. ROBERT MATSON, Ph. D.
Assistant Professor
Oklahoma State University

GULHAN GURDAL, Ph.D.
Visiting Professor
Clark University

ANUJ P. SARMA, Ph.D.
Associate Professor
University of Kentucky

GABI MIHALCEA
Laboratory Coordinator
Kansas State University

Associated Faculty

ANTHONY F. BEHOF, Ph.D.
Associate Professor Emeritus
University of Notre Dame

ZUHAIR M. EL SAFFAR, Ph.D.
Professor Emeritus
University of Wales, Great Britain

EDWIN J. SCHILLINGER, Ph.D.
Professor Emeritus
University of Notre Dame

THOMAS G. STINCHCOMB, Ph.D.
Professor Emeritus
University of Chicago

DONALD O. VAN OSTENBURG, Ph.D.
Professor Emeritus
Michigan State University
Major Requirements

Liberal Studies Requirements

Core Requirements

Concentrations

SEQUENCING OF COURSEWORK

Students interested in majoring in physics, applied computational physics, or pre-engineering should enroll in Physics 170 (University Physics I) and Mathematics 160 (Calculus for Mathematics and Science Majors I) in the Autumn quarter of their first year, provided they are adequately prepared in mathematics.

The sequences of Physics 170, 171, and 172 and Mathematics 160, 161, and 162 are prerequisites to Physics 270, Physics 300 and 301, and Physics 370, which should be taken in the sophomore year together with Mathematics 260 and 261.

It is recommended that students interested in the standard concentration or pre-engineering also take the chemistry sequence (111, 113, 115) in their first year. Because of the predominance of physics, mathematics, and chemistry sequences in the freshman and sophomore years, it is crucial that Physics and Pre-Engineering majors be advised by faculty in the Physics Department as they enter DePaul. Appointments for advising can be made by contacting the department office at (773) 325-7330.

CONCENTRATION

Physics students must declare one Physics concentration and are limited to only declaring one concentration.

Liberal Studies Requirements

<table>
<thead>
<tr>
<th>First Year Program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago Quarter</td>
<td>LSP 110 or LSP 111</td>
</tr>
<tr>
<td>Focal Point</td>
<td>LSP 112</td>
</tr>
<tr>
<td>Writing</td>
<td>WRD 103* and WRD 104*</td>
</tr>
<tr>
<td>Quantitative Reasoning & Technological Literacy</td>
<td>Not Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiculturalism in the US</td>
<td>LSP 200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiential Learning</td>
<td>Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capstone</td>
<td>Required*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning Domains</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Literature (AL)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Philosophical Inquiry (PI)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Scientific Inquiry (SI)</td>
<td>Not Required</td>
</tr>
<tr>
<td>Self, Society and the Modern World (SSMW)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td>Religious Dimensions (RD)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Understanding the Past (UP)</td>
<td>2 Courses Required</td>
</tr>
</tbody>
</table>

Note: Students must earn a C- or better in this course.

*Courses offered in the student's primary major cannot be taken to fulfill LSP Domain requirements. If students double major, LSP Domain courses may double count for both LSP credit and the second major. Students who choose to take an experiential learning course offered by the major may count it either as a general elective or the JYEL requirement.

In meeting learning domain requirements, no more than one course that is outside the students major and is cross-listed with a course within the students major, can be applied to count for LSP domain credit. This policy would apply only to those students in pursuit of a BA or BS degree, and not to those who are double majors or earning BFA or BM degrees.

Core Requirements

All concentrations require the Common Core. These core courses consist of:

Physics:

- PHY 170, 171, 172, 270, University Physics I
- PHY 300, 301, Methods of Computational and Theoretical Physics III

Mathematics:

- A sequence of courses chosen from
 - MAT 160, 161, 162, Calculus for Mathematics and Science Majors III
 - MAT 147, 148, 149, Calculus With Integrated Precalculus III
 - MAT 170, 171, 172, Promath Calculus for Mathematics and Science Majors III)
- MAT 260, Multivariable Calculus I

Concentrations

I. Standard Physics

Common Core and

Physics:

- Four courses chosen from
 - 310 Mechanics I
 - 311 Mechanics II
 - 320 Electricity and Magnetism I
 - 321 Electricity and Magnetism II
 - 360 Quantum Mechanics I
 - 361 Quantum Mechanics II
 - 370 Electronics
 - 380 Experimental Physics or 390 Applied Computational Physics Laboratory
- Four additional Physics courses, at least two at the 300 level, as approved by a departmental advisor

Allied Field Courses:

Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

- Mathematics: 261 Multivariable Calculus II

A one year-long sequence of courses in the sciences, mathematics, or computer science, chosen from the following:

- Biology: BIO 191, 192, and 193 General Biology I-III
- Chemistry: CHE 130/131, 132/133, and 134/135
- Mathematics: Three 300-level sequenced courses as approved by departmental advisor
- Computer Science: Three 300-level CDM courses as approved by departmental advisor

II. Computational Physics

Common Core and

Physics:

- 310 Mechanics I
- 320 Electricity and Magnetism I
- 360 Quantum Mechanics I
- 342 Computational Physics
- 390 Applied Computational Physics Laboratory
- Three additional physics courses, at least one at the 300 level, as approved by a departmental advisor

Allied Field Courses:

Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Mathematics:

- 261 Multivariable Calculus II

Computer Science:

- CSC 261 and CSC 262 Programming in C/C++ III
 Or
- CSC 211 and CSC 212 Programming in Java III
 And
- Three 300-level CDM courses as approved by departmental advisor

III. Engineering Physics

DePaul University offers a joint program with the Illinois Institute of Technology (IIT) in physics and engineering. This program allows students to enroll in courses at IIT while remaining full-time DePaul students. Students will receive a degree in Physics from DePaul University and a degree in Mechanical, Aerospace, Electrical, or Computer Engineering from IIT upon completion of the five-year program.

Students can also choose a four-year joint program that leads to a degree only from DePaul or can choose to complete their engineering requirements at another university. Students interested in Engineering Physics or the joint program should promptly consult with a Physics Department advisor for information about scheduling, requirements, and admission to the joint program.

Common Core and

Physics:

- 370 Electronics (for Mechanical or Aerospace Engineering) or 340 Thermal Physics (for Electrical or
- Either 320 and 321 Electromagnetism or 360 and 361 Quantum Mechanics (Electrical Engineering Students should take 320 and 321)
- Two additional physics courses at the 300 or 400 level as approved by advisor

Allied Field Courses:

Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Mathematics:
- 261 Multivariable Calculus II

Computer Science:
- 261 Programming Languages I: C/C++

Chemistry:
- 130/131 and 132/133 General and Analytical Chemistry I

Engineering courses:

Approved twenty quarter hours at 300/400 level from an accredited Mechanical, Aerospace, Aeronautical, Computer, or Electrical Engineering program.

IV. Interdisciplinary Physics

Intended for students that wish to apply their scientific training in a career outside of physics, this concentration allows students to combine a core physics curriculum with a minor from another field. Possible minors include Journalism or Technical Writing for students interested in a career in science writing, Economics for students interested in business, or Biological Sciences for students interested in biophysics.

Common Core and Physics:

Six additional courses, at least three at the 300 level, as approved by a departmental advisor.

Allied Field Courses:

Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Six courses which constitute a minor in a different discipline, as approved by a departmental advisor.

V. Teacher of Physics: Secondary Level

The Department of Physics offers a concentration of study which combines the requirements for a major in physics with certification for teaching physics at the junior high, middle, and senior high school levels.

A student electing such a program should consult the College of Education advisor as well as the Physics advisor as soon as possible after entering DePaul.

Common Core and Physics:

- 310 Mechanics I
- Five additional Physics courses, chosen from Concentration I or IV

Allied Field Courses:

Allied Field courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Chemistry:
- 130/131, 132/133, and 134/135 General and Analytical Chemistry III
Education:
- 339 Teaching Science in the Secondary School

Mathematics:
- 261 Multivariable Calculus II

SEQUENCING
It is extremely important that students interested in majoring in physics begin the calculus sequence in the first year of study so that they can complete the degree requirements in four years.

Two options are available. The student may place directly into the calculus sequence (MAT 160, 161, 162), or the student may place into MAT 131 (Trigonometry and Pre-calculus). Those students that place into MAT 160 should enroll in that course in their first quarter at DePaul.

Students that place into MAT 131 are strongly advised to take MAT 147, 148, 149 (Calculus with Integrated Precalculus I, II and III) during their first year at DePaul. Another option for these students would be to take MAT 131 and MAT 160 concurrently in the autumn quarter.

Students interested in physics should also enroll in University Physics (PHY 170, 171, 172) during their first year. This sequence, along with the Calculus courses discussed above, are prerequisites to PHY 270, PHY 300, PHY 301, and PHY 370, which should be taken in the sophomore year along with MAT 260 and 261, Multivariable Calculus. All remaining courses are determined by the requirements of the concentration.

Students interested in Engineering Physics or Pre-engineering are urged to consult with a Physics Department advisor as soon as practicable.

The predominance of physics, mathematics, and chemistry sequences in the freshman and sophomore years requires that the majority of Liberal Studies courses be postponed until the junior and senior years. Students should therefore take fewer Liberal Studies courses in the first two years, concentrating instead on those major field requirements that are prerequisites to upper division courses.

College of Science and Health - Undergraduate Studies ▶ Programs of Study ▶ Physics ▶ Minor Requirements

Minor Requirements

The Physics Department offers three minors, each requiring 24 credit hours.

Students may complete a **Physics** minor by completing either PHY 150, 151, and 152 (General Physics IIII) or PHY 170, 171, and 172 (University Physics IIII), plus three additional physics courses.

Students may complete an **Electronics** minor by completing PHY 110 (Basic Electronics), PHY 231 (Linear Electric Circuits), PHY 232 (Introduction to Digital Electronics), and three additional physics courses.

Students may complete a **Computational Physics** minor by completing PHY 170, 171, 172, and 270 (University Physics IIIV), plus PHY 300 and 301 (Methods of Computational and Theoretical Physics III).

College of Science and Health - Undergraduate Studies ▶ Programs of Study ▶ Physics ▶ Special Programs

Special Programs

PRE-ENGINEERING
The Pre-engineering Program is an important component of the Physics Department curriculum. It is an alternative to the Engineering Physics concentration and is designed to provide students that wish to attend DePaul University for one or two years with the scientific background necessary to complete a degree program in engineering at another institution.

Under this program, DePaul University does not grant a degree but students benefit from the high faculty-to-student ratio in courses and the opportunity to work in faculty research labs.
DOUBLE MAJOR
Students interested in a double major such as Mathematics and Physics may elect a sufficient number of advanced mathematical science courses (generally six to eight) to satisfy the requirements of the concentration of their choice.

RESEARCH AT ARGONNE NATIONAL LABORATORY
College juniors and seniors with a minimum GPA 3.0/4.0 who are U.S. citizens or permanent residents may apply for the Science and Engineering Research Semester (SERS) at Argonne. The SERS program pays a stipend, plus housing and travel.

For more details, contact the Physics Department chair and write to:
Science and Engineering Research Semester
Division of Educational Programs
Argonne National Laboratory
Argonne, IL 60439-4845.

TEACH PROGRAM
This program provides students the opportunity to complete in as few as five years an undergraduate Physics major and a Masters of Education degree with State of Illinois secondary teaching certification in Environmental Science. As a combined degree program of the College of Science and Health and the College of Education, the program is collaboratively developed, governed, and taught by faculty from both units.

Students may apply to the Program during the spring of their junior year. They must complete the Junior Year Experiential Course TCH 320, Exploring Teaching in an Urban High School, and meet other application criteria prior to applying; these include completion of at least 16 quarter credit hours at DePaul and a 3.0 GPA. During their senior year, students are required to complete a Program capstone course and three 400-level courses that count toward both their undergraduate and graduate degrees. The Masters year comprises teacher-preparation coursework that culminates with student teaching during Spring quarter. Upon graduation and the fulfilling of State of Illinois Certification requirements (which may require some additional course work in the students major and related fields), students are eligible to be certified to teach Physics at the 6th-12th grade levels.

A full description of the Program can be found on the College of Education website in the graduate course catalog. Students interested in the Program should consult with the designated TEACH Program advisor in their home department.

Courses
Please visit Campus Connection at https://campusconnect.depaul.edu for current course information. If you do not have a password for Campus Connection you may log on as a guest. Once you are on Campus Connection please select Course Descriptions followed by the department. Unless otherwise specified, all courses carry 4 quarter hours credit.

Courses 150 through 156 are offered primarily for students (such as those in programs in the biological and medical sciences) whose requirements call for a one-year course (with laboratory) in General Physics without calculus.

General (approved for Liberal Studies credit; not for majors)

PHY 104 The Sun and Its Planets
PHY 110 Basic Electronics
PHY 114 Exploring Other Worlds
PHY 120 How Things Work
PHY 150 General Physics I
PHY 151 General Physics II
PHY 152 General Physics III
PHY 155 General Physics
PHY 156 General Physics II
PHY 200 Light and Atoms
PHY 204 Frontiers of the Universe
PHY 205 Einsteins Peculiar Ideas
PHY 206 Sound and Acoustics
PHY 220 The Dynamic Ocean
Psychology

The goal of the Department of Psychology is to provide students with an understanding of the methods and content of scientific and applied psychology.

The primary means of attaining our mission is classroom instruction. We offer courses across a wide range of disciplines within psychology; some of our courses also include laboratories that focus on experimental and statistical work. Some of these courses are beginning to be offered as fully online and as hybrid courses (partially online and partially in the classroom). Further learning opportunities are made available through field work, the Honors Program, Experiential Learning, Independent Study, and Internships. Our Internship Program consists of supervised work placements for which students earn academic credit; potential sites include human service organizations as well as community and industrial settings.

Psychology majors must select one of the six B.A. concentrations: Standard, Human Development, Human Services, Industrial/Organizational, Community, Comprehensive Evening Program, or select one of the two Bachelor of Science concentrations: General Bachelor of Science or Cognitive Neuroscience. Three psychology minors are available in Experimental, Industrial/Organizational, and Applied areas.
After completing any of the concentrations, a psychology major should be able to read and understand behavioral science data, design and conduct rudimentary psychological research studies, and apply research findings to everyday situations. These skills are applicable to a wide variety of occupations and professions. Psychology as a major provides excellent opportunities for students planning to go to graduate or professional school. Psychology as a minor provides a flexible complement to other majors.

There are 33 tenured and tenured-track faculty in the department, nearly half of whom are women and twenty percent of whom are minorities. In addition, the Chicago area provides highly qualified part-time faculty who teach specialized courses. The areas of faculty interest range from basic laboratory research in cognition to on-site applied research in the prevention of adolescent pregnancy.

In addition to the undergraduate curriculum, the department houses five Ph.D. programs in the areas of Clinical Child, Clinical Community, Community, Experimental, and Industrial/Organizational psychology. The department also offers a terminal M.S. program in general psychology as well as a combined B.A./M.S. program in Industrial/Organizational psychology. The department draws upon the metropolitan Chicago area when placing students in practica, internships, and jobs. Additionally, Chicago hosts the annual convention of the Midwestern Psychological Association and meetings of other professional organizations, providing our advanced students ample access to opportunities for scholarly participation in the field of psychology.

Extensive facilities are available to support the departmental programs. The department's offices, classrooms, laboratories, and the DePaul Family and Community Services center occupy four floors of Byrne Hall. University facilities include a networked library and additional computer labs. The DePaul Clinical Child Graduate program was recognized by American Psychological Association as the best training program in the country for 2006.

Faculty

SUSAN D. McMAHON, Ph.D.,
Professor and Chair
DePaul University

DAVID ALLBRITTON, Ph.D.,
Associate Professor
Yale University

SUZANNE BELL, Ph.D.,
Associate Professor
Texas A&M University

KAREN S. BUDD, Ph.D.,
Professor
University of Kansas

LINDA A. CAMRAS, Ph.D.,
Professor
University of Pennsylvania

JOCELYN SMITH CARTER, Ph.D.,
Assistant Professor
Vanderbilt University

DOUGLAS CELLAR, Ph.D.,
Associate Professor
University of Akron
CECILIA MARTINEZ-TORTEYA, Ph.D.
Assistant Professor
University of Michigan

JOSEPH A. MIKELS, PH.D.
Assistant Professor
University of Michigan

ANTONIO POLO, Ph.D.
Assistant Professor
University of California, Los Angeles

KIMBERLY QUINN, Ph.D.
Assistant Professor
University of Western Ontario

CHISTINE REYNA, Ph.D.
Associate Professor and Associate Chair
University of California, Los Angeles

W. LAVOME ROBINSON, Ph.D.,
Professor
University of Georgia

BERNADETTE SANCHEZ, Ph.D.,
Associate Professor
University of Illinois-Chicago

ALICE STUHLMACHER, Ph.D.,
Professor
Purdue University

ANNETTE TOWLER, Ph.D.,
Associate Professor
Rice University

NATHAN R. TODD, PH.D.
Assistant Professor
University of Illinois

SANDRA VIRTUE, Ph.D.
Associate Professor
University of Minnesota

EDWIN S. ZOLIK, Ph.D.,
Professor Emeritus
Catholic University of America

ADJUNCT FACULTY

MIDGE WILSON, Ph.D.
Professor and Associate Dean
University of North Carolina

Major Requirements

CONCENTRATION
Psychology students must declare one Psychology concentration and are limited to only declaring one concentration.

Liberal Studies Requirements

Common Core
Bachelor of Arts
Bachelor of Science

Liberal Studies Requirements

<table>
<thead>
<tr>
<th>First Year Program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago Quarter</td>
<td>LSP 110 or LSP 111</td>
</tr>
<tr>
<td>Focal Point</td>
<td>LSP 112</td>
</tr>
<tr>
<td>Writing</td>
<td>WRD 103* and WRD 104*</td>
</tr>
<tr>
<td>Quantitative Reasoning & Technological Literacy</td>
<td>LSP 120 and LSP 121</td>
</tr>
<tr>
<td></td>
<td>(Note: See information below)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiculturalism in the US</td>
<td>LSP 200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiential Learning</td>
<td>Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capstone</td>
<td>Required*</td>
</tr>
</tbody>
</table>

Learning Domains

<table>
<thead>
<tr>
<th>Arts and Literature (AL)</th>
<th>3 Courses Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philosophical Inquiry (PI)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Scientific Inquiry (SI)</td>
<td>3 Courses Required</td>
</tr>
<tr>
<td></td>
<td>(Note: One course must be a lab)</td>
</tr>
<tr>
<td>Self, Society and the Modern World (SSMW)</td>
<td>1 Course Required</td>
</tr>
<tr>
<td>Religious Dimensions (RD)</td>
<td>2 Courses Required</td>
</tr>
<tr>
<td>Understanding the Past (UP)</td>
<td>2 Courses Required</td>
</tr>
</tbody>
</table>

Students must earn a C- or better in this course.

Quantitative Reasoning and Technological Literacy:
Readiness for LSP 120 is determined by the math placement test taken online after admission. Students may need to take developmental coursework prior to LSP 120. The LSP 120 requirement may be waived by credit already earned for advanced math coursework or by passing a dedicated proficiency exam. Students who complete both LSP 120 and LSP 121 take one less Learning Domain course. Students may not apply the course reduction to any Domain where only one course is required, and if taken within the SI Domain, the reduction cannot be applied to the SI Lab requirement.

Courses offered in the student’s primary major cannot be taken to fulfill LSP Domain requirements. If students double major, LSP Domain courses may double count for both LSP credit and the second major. Students who choose to take an experiential learning course offered by the major may count it either as a general elective or the JYEL requirement.

In meeting learning domain requirements, no more than one course that is outside the students major and is cross-listed with a course within the students major, can be applied to count for LSP domain credit. This policy
would apply only to those students in pursuit of a BA or BS degree, and not to those who are double majors or earning BFA or BM degrees.

College of Science and Health - Undergraduate Studies ▶ Programs of Study ▶ Psychology ▶ Common Core

Common Core

Psychology: 105 Introductory Psychology I; 106 Introductory Psychology II; 240 Statistics I; 241 Research Methods I; and 242 Research Methods II. Psychology 105 and 106 are not sequential, i.e., one is not a prerequisite for the other. They may be taken in either order. For the research sequence, PSY 240 must be taken first; PSY 241 and PSY 242 may be taken in either order. A special note: PSY 340 Statistics II, an elective course, may be taken immediately after the completion of PSY 240. Capstone: PSY 361 History and Systems is the required senior capstone. Students who are double majors take only one capstone in either major. University Honors students are not required, however it is recommended.

College of Science and Health - Undergraduate Studies ▶ Programs of Study ▶ Psychology ▶ Bachelor of Arts

Bachelor of Arts

The program consists of the common core plus eight additional courses in a concentration area. Bachelor of Arts students are required to take fourteen general electives which may be psychology and/or other department courses. Students may choose to complete a minor or double-major. Bachelor of Arts students must fulfill the Modern Language requirement.

Upon faculty approval psychology majors may register for the following psychology courses: 396 Psychology Honors, 397 Experiential Psychology/Psychology Research, 398 Tutoring and Mentoring in Psychology, and 399 Independent Study.

BACHELOR OF ARTS CONCENTRATIONS:

I. STANDARD CONCENTRATION
Psychology: Common Core plus one of the following three class - 340 Statistics II, 342 Research Methods III, or 343 Psychological Measurement. Students will also take 347 Social Psychology; 351 Theories of Personality or 360 Theories of Learning and Cognition; 377 Physiological Psychology; and four additional Psychology courses. Psychology courses must be numbered 317 and above to count toward major field.

II. HUMAN DEVELOPMENT CONCENTRATION
Psychology: Common Core plus 333 Child Psychology; 334 Adolescent Psychology; 347 Social Psychology; and five additional Psychology courses. Psychology courses must be numbered 317 and above to count toward major field.

III. HUMAN SERVICES CONCENTRATION
Psychology: Common Core plus 333 Child Psychology; 347 Social Psychology; 353 Abnormal Psychology; 357 Applied Psychology I (winter quarter/junior year); 358 Applied Psychology II (spring quarter/junior year); and 395 Field Work/Internship which is taken three times in the students senior year.

IV. INDUSTRIAL/ORGANIZATIONAL PSYCHOLOGY CONCENTRATION
Psychology: Common Core plus 380 Industrial/Organizational Psychology; two courses from 355 Teams and Work Groups in Organizations, 381 Personnel Psychology, 382 Organizational Behavior, 385 Training and Development in Organizations and 388 Topical Seminar in Industrial/Organizational Psychology; either 343 Introduction to Psychological Measurement or 340 Statistics II; and four additional Psychology courses. Psychology courses must be numbered 317 and above to count toward major field.

V. COMMUNITY CONCENTRATION
Psychology: Common Core plus PSY 354 Community Psychology, PSY 356 Principles of Field Research and Action (spring/junior year), PSY 359 Field Work in Community Research and Action (which is taken twice: autumn/senior year and winter/senior year); One diversity course from PSY 325 Psychology of Women, PSY 326 Psychology of Men, PSY 345 Cultural Issues in Psychology, and PSY 346 Psychology of African-American Child; One course from PSY 347 Social Psychology or PSY 380 Industrial and Organizational Psychology; One course from PSY 333 Child Psychology and PSY
334 Adolescent Psychology; and One course from PSY 351 Theories of Personality and PSY 353 Abnormal Psychology.

VI. COMPREHENSIVE EVENING PROGRAM
Psychology: Common Core plus two courses from 355 Groups and Organizations, 380 Industrial and Organizational Psychology, 381 Personnel Psychology, 382 Organizational Behavior and 385 Training and Development in Organizations; two courses from 302 Personal Adjustment and Mental Health, 351 Theories of Personality, and 353 Abnormal Psychology; two courses from 303 Human Development, 347 Social Psychology, and 360 Theories of Learning and Cognition; and two electives from the remaining above courses.

College of Science and Health - Undergraduate Studies ▪ Programs of Study ▪ Psychology ▪ Bachelor of Science

Bachelor of Science

I. BACHELOR OF SCIENCE (GENERAL)

The program consists of the common core, five required psychology courses, and three psychology electives. Bachelor of Science students must also fulfill the five course major-level Biology and/or Math requirement, plus nine general electives.

Psychology: Common Core plus PSY 340 Statistics II (this course may be taken immediately after the completion of PSY 240 Statistics I), 342 Research Methods III, 343 Introduction to Psychological Measurement, 360 Theories of Learning and Cognition; 377 Physiological Psychology; and three additional major-level psychology courses numbered 317 and above.

NOTE: An exceptional student who has completed the required courses in Experimental Psychology may, upon consent of his advisor and the chairman, be admitted in the senior year to certain 400-level courses described in the Graduate School Bulletin.

Allied Field Courses:

Allied Field Courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

Twenty quarter hours in major-level biology and/or mathematics are required. This requirement is to be developed in consultation with the departmental advisor. The student is urged to devote some general elective hours to courses in disciplines other than his/her major. Note: MAT 130 Precalculus is a prerequisite for major level BIO and MAT courses.

In addition, all psychology majors are encouraged to engage in individual research projects with the supervision of faculty. Upon faculty approval psychology majors may register for the following psychology courses: 396 Psychology Honors, 397 Experiential Psychology/Psychology Research, 398 Tutoring and Mentoring in Psychology, and 399 Independent Study.

II. BACHELOR OF SCIENCE - COGNITIVE NEUROSCIENCE CONCENTRATION

The program consists of the common core, five required psychology courses, and three psychology electives. Students must also fulfill the allied field requirement, plus one BIO elective; and 8 general electives.

Psychology: Common core * plus five required psychology courses: PSY 340 Statistics II (this course may be taken immediately after the completion of PSY 240 Statistics I), PSY 342 Research Methods III, PSY 343 Introduction to Psychological Measurement, PSY 360 Theories of Learning and Cognition, and PSY 377 Physiological Psychology. The three additional psychology electives should be chosen from the following: PSY 348 Social Cognition & Mental Control, PSY 353 Abnormal Psychology, PSY 363 Alcoholism, Drug Addiction and Recovery, PSY 364 Health Psychology & Stress Management, PSY 373 Happiness, Judgment and Decision Making.

Allied Field Courses:

Allied Field Courses are required for completion of a major's requirements, but which are offered by departments other than the major department.

6 Major Level Biology Courses are required: BIO 191 General Biology I for Science Majors, BIO 192 General Biology II for Science Majors, BIO 193 General Biology III for Science Majors (required for higher level BIO).
Consult with faculty advisor to select 3 additional major level BIO courses. *PSY 377 is a prerequisite to some BIO courses so it is recommended that this course be taken after the completion of the PSY Core. Note: MAT 130 Precalculus is a prerequisite for BIO 191.

College of Science and Health - Undergraduate Studies ▶ Programs of Study ▶ Psychology ▶ Minor Requirements

Minor Requirements

For students who are majoring in another department, the Psychology Department offers three minors, each requiring six courses overall in Psychology.

Experimental minor:

PSY 105, PSY 106 and at least two courses in Experimental/Biological foundations (PSY 360, 373, 377) and two PSY classes. It is recommended that all classes be major level (317 and above).

Industrial Organizational minor:

PSY 105, PSY 106, 380 and one more course from the following list: PSY 355, 381, 382, 385, 388 and two additional PSY electives. It is recommended that all classes be major level (317 and above).

Applied Psychology minor:

PSY 105, 106 and at least two from the following list: PSY 317, 345, 347, 348, 353, 363, 364, 366 and two additional PSY electives. It is recommended that all classes be major level (317 and above).

College of Science and Health - Undergraduate Studies ▶ Programs of Study ▶ Psychology ▶ Special Programs

Special Programs

PROGRAM IN INDUSTRIAL/ORGANIZATIONAL PSYCHOLOGY

The B.A./M.S. Program in Industrial/Organizational Psychology is a combined program in which the student can earn both a B.A. and an M.S. in Psychology. The student will begin taking graduate level courses in the senior year and complete requirements for an M.S. in Psychology during the fifth year of study. Students should meet with an I/O area advisor as soon as possible ideally, no later than the end of the sophomore year. Applications for admission to the M.S. portion of the program are available from the I/O Area Director and must be received along with supporting transcripts and Graduate Record Exam scores by June 1 of the junior year. The Liberal Studies requirements and the common core in Psychology must be completed prior to admittance to the program. An overall GPA of 3.2 or better is required to be considered for the program.

Undergraduate courses: The same courses as the B.A. Industrial/Organizational Concentration (see description above); however, additional undergraduate psychology electives are substituted for two undergraduate courses in Industrial/Organizational beyond 380. Graduate courses: 404 Learning Processes; 430 Advanced Social Psychology; 410 and 411 Advanced Statistics I and II; 420 Advanced Research Methodology; and 597 Masters Thesis Research. A total of five graduate-level Industrial/Organizational courses are selected in consultation with a program advisor. Note: Please see the Graduate Bulletin for course descriptions.

TEACH PROGRAM

This program provides students the opportunity to complete in as few as five years an undergraduate Psychology major and a Masters of Education degree with State of Illinois secondary teaching certification in Social Science. As a combined degree program of the College of Science and Health and the College of Education, the program is collaboratively developed, governed, and taught by faculty from both units. Students may apply to the Program during the spring of their junior year. They must complete the Junior Year Experiential Course TCH 320, *Exploring Teaching in an Urban High School*, and meet other application criteria prior to applying; these include completion of at least 16 quarter credit hours at DePaul and a 3.0 GPA. During their senior year, students are required to complete a Program capstone course and three 400-level courses that count toward both their undergraduate and graduate degrees. The Masters year comprises teacher-preparation coursework that culminates with student teaching during
Spring quarter. Upon graduation and the fulfilling of State of Illinois Certification requirements (which may require some additional course work in the students major and related fields), students are eligible to be certified to teach Social Studies at the 6th-12th grade levels.

A full description of the Program can be found on the College of Education website in the graduate course catalog. Students interested in the Program should consult with the designated TEACH Program advisor in their home department early in their undergraduate career.

Courses

Please visit Campus Connection at https://campusconnect.depaul.edu for current course and prerequisite information. If you do not have a password for Campus Connection you may log on as a guest. Once you are on Campus Connection please select Course Descriptions followed by the department.

Introductory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 105</td>
<td>Introductory Psychology I</td>
</tr>
<tr>
<td>PSY 106</td>
<td>Introductory Psychology II</td>
</tr>
<tr>
<td>PSY 210</td>
<td>Psychology of Business and industry</td>
</tr>
<tr>
<td>PSY 215</td>
<td>Human Sexuality</td>
</tr>
<tr>
<td>PSY 216</td>
<td>Mental Health Problems Contemporary Society</td>
</tr>
<tr>
<td>PSY 218</td>
<td>Psychological Problems of Contemporary Family</td>
</tr>
</tbody>
</table>

Human Development

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 303</td>
<td>Human Development</td>
</tr>
<tr>
<td>PSY 333</td>
<td>Child Psychology</td>
</tr>
<tr>
<td>PSY 334</td>
<td>Adolescent Psychology</td>
</tr>
<tr>
<td>PSY 346</td>
<td>Psychology of the African-American Child</td>
</tr>
<tr>
<td>PSY 367</td>
<td>Psychology of Exceptional Children</td>
</tr>
<tr>
<td>PSY 370</td>
<td>Social and Emotional Development</td>
</tr>
</tbody>
</table>

Social and Personality

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 317</td>
<td>Psychology of Interpersonal Relationships</td>
</tr>
<tr>
<td>PSY 347</td>
<td>Social Psychology</td>
</tr>
<tr>
<td>PSY 348</td>
<td>Social Cognition and Mental Control</td>
</tr>
<tr>
<td>PSY 351</td>
<td>Theories of Personality</td>
</tr>
<tr>
<td>PSY 355</td>
<td>Groups and Organizations</td>
</tr>
<tr>
<td>PSY 363</td>
<td>Alcoholism, Drug Addiction and Recovery</td>
</tr>
<tr>
<td>PSY 392</td>
<td>Psychology of Alienation</td>
</tr>
</tbody>
</table>

Applied

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 302</td>
<td>Personal Adjustment and Mental Health</td>
</tr>
<tr>
<td>PSY 345</td>
<td>Cultural Issues in Diversity</td>
</tr>
<tr>
<td>PSY 353</td>
<td>Abnormal Psychology</td>
</tr>
<tr>
<td>PSY 354</td>
<td>Community Psychology</td>
</tr>
<tr>
<td>PSY 356</td>
<td>Principles of Field Research and Action</td>
</tr>
<tr>
<td>PSY 357</td>
<td>Applied Psychology I</td>
</tr>
<tr>
<td>PSY 358</td>
<td>Applied Psychology II</td>
</tr>
<tr>
<td>PSY 359</td>
<td>Field Work in Psychological Research and Action</td>
</tr>
<tr>
<td>PSY 364</td>
<td>Health Psychology and Stress Management</td>
</tr>
<tr>
<td>PSY 366</td>
<td>Behavior Problems of Children</td>
</tr>
<tr>
<td>PSY 368</td>
<td>Child Abuse and Neglect</td>
</tr>
<tr>
<td>PSY 393</td>
<td>Psycholinguistics</td>
</tr>
</tbody>
</table>

Biological and Experimental Foundations

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 360</td>
<td>Theories of Learning and Cognition</td>
</tr>
<tr>
<td>PSY 361</td>
<td>History and Systems of Psychology</td>
</tr>
<tr>
<td>PSY 362</td>
<td>Seminar in Cognition</td>
</tr>
<tr>
<td>PSY 373</td>
<td>Happiness, Judgment and Decision Making</td>
</tr>
<tr>
<td>PSY 375</td>
<td>Sensation and Perception</td>
</tr>
</tbody>
</table>
PSY 377 Physiological Psychology
PSY 378 Comparative Psychology

Industrial/Organizational Psychology
PSY 355 Groups and Organizations
PSY 380 Industrial and Organizational Psychology
PSY 381 Personnel Psychology
PSY 382 Organizational Behavior
PSY 383 Psychology of Design
PSY 384 Consumer Behavior and Advertising
PSY 385 Training and Development in Organizations
PSY 388 Topical Seminar in Industrial-Organizational Psychology

Statistics and Research Methodology
PSY 240 Statistics I
PSY 241 Research Methods I
PSY 242 Research Methods II
PSY 340 Statistics II
PSY 341 Methods in Qualitative Research
PSY 342 Research Methods III
PSY 343 Introduction to Psychological Measurement
PSY 372 Research Methods in Social Psychology

Special Topics
PSY 213 Lesbian, Gay, Bisexual and Transgender Psychology
PSY 220 Latino/a Psychology
PSY 221 Asian American Psychology
PSY 280 Contemporary Issues
PSY 305 Psychology and Social Justice
PSY 306 Service Learning
PSY 310 Connecting w/ Youth through Research, Advocacy, and Service
PSY 311 Connecting w/ Youth through Research, Advocacy, and Service
PSY 312 Connecting w/ Youth through Research, Advocacy, and Service
PSY 325 Psychology of Women
PSY 326 Psychology of Men
PSY 394 Advanced Topics in Psychology
PSY 395 Field Work/Internship
PSY 396 Honors in Psychology
PSY 397 Experiential Learning/Psychology Research
PSY 398 Tutoring and Mentoring in Psychology
PSY 399 Independent Study