MASTER OF SCIENCE IN COMPUTER SCIENCE

MASTER OF SCIENCE IN HUMAN-COMPUTER INTERACTION

MASTER OF SCIENCE IN INFORMATION SYSTEMS

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

MASTER OF SCIENCE IN TELECOMMUNICATIONS SYSTEMS

JOINT – M.S./M.I.S.

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

To obtain a 1996-97 Bulletin for the Kellstadt Graduate School of Business call (312) 362-8810, for the College of Law call (312) 362-8701, or for Graduate Programs call (312) 362-5367.

DePaul University Bulletin (USPS = 154-280), No. 5, July 1, 1996. Published monthly, March through July, five times per year by DePaul University, 1 East Jackson Boulevard, Chicago, Illinois, 60604. Second-class postage paid at Chicago, Illinois. POSTMASTER: Send address changes to DePaul University Bulletin, 1 East Jackson Boulevard, Chicago, Illinois 60604.

DePaul University does not discriminate on the basis of race, color, national origin, religion, gender, sexual orientation, age, or handicap in admissions, employment, or the provision of services. Inquiries regarding this policy should be addressed to the Director of Human Resources, DePaul University, 25 E. Jackson Boulevard, Chicago, Illinois 60604.

Editor: Gwyn Friend
CONTENTS

CAMPUS MAP

SCHOOL OF COMPUTER SCIENCE, TELECOMMUNICATIONS AND INFORMATION SYSTEMS
Philosophy 7, Faculty 7, Purposes 8, Facilities 9, Master of Science in Computer Science 10, Master of Science in Human-Computer Interaction 20, Master of Science in Information Systems 22, Master of Science in Software Engineering 24, Master of Science in Telecommunication Systems 29, Master of Science in Management Information Systems 33, Doctor of Philosophy in Computer Science 37, Course Descriptions 44.

THE UNIVERSITY
Campuses 69, Libraries 69, Academic Computing Facilities 70, Career Development Center 71, Residence Life 71, Accreditation 71, Honor Societies 72, Board of Trustees 73, General Administration 73.

ACADEMIC INFORMATION AND REGULATIONS
Admission Classifications 74, Admission Procedures 75, Master's Program Requirements 76, Doctoral Program Requirement 77, Student Responsibility 79, Academic Counseling 79, Courses and Credit 79, Grades 80, Probation and Dismissal 81, Plagiarism 81, Registration Procedures 82, Graduation Procedures 82, Commencement 82.

FINANCIAL POLICIES AND PROCEDURES

CALENDAR
1996-97 Graduate Academic Calendar 90.

STATEMENT OF VINCENTIAN CHARACTER

Note: The University reserves the right to revise its Bulletins and Schedules. See page 81 for further details.
ADMINISTRATION

Helmut Epp, Ph.D.
Dean

David P. Miller, Ph.D.
Associate Dean

Anne B. Morley
Director, Student Services

PHILOSOPHY

FACULTY

PURPOSES

FACILITIES

PROGRAMS

Master of Science
- Computer Science
- Human-Computer Interaction
- Information Systems
- Software Engineering
- Telecommunication Systems
- Management Information Systems

Doctor of Philosophy
- Computer Science

COURSES
PHILOSOPHY

DePaul University, founded on Judeo-Christian principles, continues to assert the relevance of these principles through higher education to modern man and woman. The University expresses these principles especially by passing on the heritage of St. Vincent de Paul: individual perfection manifested through purposeful involvement with other persons, communities and institutions.

The School of Computer Science, Telecommunications and Information Systems assumes as its direct educational task to foster in its students those traditions of scholarliness central to advanced studies and research. The programs for the master's and doctoral degrees are designed to develop in graduate students a broad and deep knowledge of their chosen discipline, the research methodology of the discipline and the development of those competencies necessary for their personal advancement in their scholarly, professional or creative careers.

Through the steady flow of its graduates into the community, the School strives to assist contemporary society to meet its need for educated individuals willing to be of service to others.

FACULTY

Helmuth Epp, Ph.D.
Associate Professor and Dean
Northwestern University

Sally Adams, J.D.
Lecturer
John Marshall College of Law

L. Edward Allemand, Ph.D.
Professor Emeritus
University of Louvain

Gary Andrus, Ph.D.
Associate Professor
Wayne State University

Karen L. Bernstein, Ph.D.
Assistant Professor
State University of New York at Stony Brook

Michael S. Borella, Ph.D.
Assistant Professor
University of California

Gregory Brewster, Ph.D.
Assistant Professor
University of Wisconsin

Susy S. Chan, Ph.D.
Associate Professor
Syracuse University

I-Ping Chu, Ph.D.
Associate Professor
S.U.N.Y. at Stony Brook

Anthony Chung, Ph.D.
Assistant Professor
University of Maryland

Lawrence Dribin, Ph.D.
Lecturer
Illinois Institute of Technology

Br. Michael Driscoll, M.S.
Instructor
Notre Dame University

Clark Elliott, Ph.D.
Assistant Professor
Northwestern University

Richard Ezop, M.B.A.
Lecturer
University of Chicago

Robert James Fisher, Ph.D.
Associate Professor
Harvard University

Gerald Gordon, Ph.D.
Associate Professor
University of California, Berkeley

Daniel Gorski, B.B.A.
Lecturer
University of Wisconsin

Henry Harr, Ph.D.
Associate Professor
Illinois Institute of Technology

James Heatherly, M.B.A.
Lecturer
DePaul University
PURPOSES

The School of Computer Science, Telecommunications and Information Systems offers graduate level, professional education in these areas: artificial intelligence, computer science, data analysis, database, data communications, human-computer interaction, information systems, project management, software engineering, telecommunication systems, visual computing, and management information systems. Students choose from a broad collection of courses to develop, in depth, the research habits and practical skills needed for research and professional practice. The School's programs are designed to provide its graduates with the technical competence and the flexibility necessary to respond to both present and future opportunities in the computing professions.
FACILITIES

DePaul's Information Services Division (ISD) houses a large network of computers and allows students access to a rich computing environment. The configuration includes several Sun SPARCcenters for student use. In addition, students have access to IBM PC laboratories and Macintosh laboratories at the Loop and Lincoln Park campuses. There are numerous dial-up phone numbers available for off-campus work. DePaul's suburban campuses in the Oak Brook, O'Hare, South and West areas also offer excellent student laboratory facilities. Permanent student Internet access accounts are available along with dial-in SLIP connections.

The School itself operates specialized laboratories for artificial intelligence, computer vision and graphics, software engineering, telecommunications, local area networks and computer telephony. One laboratory allows students to explore specialized software. The laboratories include both PCs and UNIX workstations. The school also operates an IBM ES 9000/9221.

ISD and School computers are connected by Ethernet. All of the School's computers and laboratories form their own subnet using TCP/IP. A separate Starlan network connects the ISD IBM PC laboratories. DePaul is connected to the Internet.

PROGRAMS

The school offers graduate work leading to the Master of Science and Doctor of Philosophy degrees as well as non-degree programs in Professional Development. The M.S. is a terminal degree. A master's degree in computer science or a related field is required for consideration for the Doctor of Philosophy degree. The curricula cover theoretical foundations, state-of-the-art techniques and skills, and major trends. The school offers programs in the following areas:

PROFESSIONAL DEVELOPMENT

The School of Computer Science, Telecommunications and Information Systems established the Institute for Professional Development in 1985 to offer certificate programs designed to meet the needs of both individuals and businesses in the Chicagoland area. These non-degree offerings provide intensive training in a wide variety of areas, with each stand-alone certificate program addressing a different set of theoretical concepts and practical skills. Emphasis is placed on gaining practical experience through a combination of lectures and demonstrations complemented by laboratory exercises and homework assignments.

Each certificate program is taught by a team of instructors that includes full-time faculty with consulting experience and part-time instructors from industry. Each program requires a substantial commitment of time, as classes meet two nights per week and in the morning on half of the Saturdays during the program.

For application and registration information pertaining to the certificate programs offered by the Institute for Professional Development please call the Institute office at (312)362-6282.
MASTER OF SCIENCE IN COMPUTER SCIENCE

The Master's degree program consists of three phases:

- Prerequisite Phase.
- Core Knowledge Phase.
- Advanced Phase.

The Prerequisite Phase guarantees that all students have a common background. Successful completion of the Prerequisite Phase constitutes part of the admission requirements for the master's degree program.

The Core Knowledge and Advanced Phase constitute the degree program. The Core Knowledge Phase prepares students for their chosen concentration. In the Advanced Phase, students specialize in their concentration area. The concentration requirements are tailored to meet individual student's needs. The student must pass an examination to move from one phase to the other.

Students with a superior undergraduate academic record who have completed sufficient undergraduate coursework in Computer Science are eligible for the Distinguished Scholars Program (DSP) within the M.S. degree in Computer Science. DSP provides a more flexible and accelerated program of study than the regular program, has a research orientation, and requires a master's thesis. The program is recommended for students with an interest in research and development work or in future doctoral study in Computer Science. Participants in this program may receive early admission to the Ph.D. program.

ADMISSION REQUIREMENTS

All applicants who satisfy general graduate school admission requirements initially receive conditional admittance and may then pursue a degree program. For full admission to a degree program, students must have the following:

- Bachelor's degree (not necessarily in computer science).
- Counseling session with a graduate counselor.
- A grade of B- or better in the Prerequisite Phase courses.

At the time of admission, students with an undergraduate major in Computer Science or an allied field, who have successfully completed the GRE subject test, may petition the admissions committee to waive all Prerequisite Phase requirements. If the Prerequisite Phase requirements are not waived by the admissions committee, the requirements can be met by taking the courses at DePaul and receiving a grade of at least B-.

Alternatively, the Graduate Assessment Prerequisite Phase course requirements can be met by taking an equivalency exam, the Graduate Assessment Exam (GAE). Students with related course work or experience in calculus or statistics should consult a graduate advisor for possible waiver of the Quantitative Prerequisite Phase course requirements.

The GAE is offered at the beginning of each month. Applications for the exam must be received at least one week before the exam. Exam dates, application forms and a study guide are available from the school (phone 312/362-8714). For more information on this exam, contact a graduate advisor.
GRADUATE ASSESSMENT PREREQUISITE PHASE COURSES: COMPUTER SCIENCE

Sequence A:
CSC 215 Introduction to Programming Using C++
CSC 310 Principles of Computer Science I. Prerequisites: MAT 140 and CSC 215.
CSC 415 Foundations of Computer Science II. Prerequisite: CSC 310.
CSC 416 Foundations of Computer Science II. Prerequisite: CSC 415.
CSC 417 Foundations of Computer Science III. Prerequisite: CSC 415.

OR

Sequence B (restricted to graduate students with programming experience):
CSC 225 C++ for Programmers
CSC 415 Foundations of Computer Science I. Prerequisites: MAT 140 and CSC 225.
CSC 416 Foundations of Computer Science II. Prerequisite: 415.
CSC 417 Foundations of Computer Science III. Prerequisite: 415.

All students must fulfill the following requirements:
CSC 343 Introduction to Operating Systems. Prerequisite: CSC 415
CSC 345 Computer Architecture. Prerequisite: CSC 415
MAT 140 Discrete Mathematics

QUANTITATIVE PREREQUISITE PHASE COURSES: COMPUTER SCIENCE

The following competencies are required as part of the Prerequisite Phase. Equivalency exams are not offered for the following courses. Students with related coursework and/or experience in these areas should consult with a graduate advisor.

MAT 145 Calculus for Information Systems OR MAT 150 and 151 Calculus I - II
CSC 323 Data Analysis and Statistical Software I

DEGREE REQUIREMENTS

Students must complete 13 courses (52 hours) beyond the Prerequisite Phase and after receiving full degree-seeking admission. Successful completion of the Master of Science in Computer Science consists of:

- Completion of Core Knowledge Phase courses.
- Passing the Core Knowledge examination.
- Completion of Advanced Phase courses.

The Advanced Phase courses are chosen from one of the following concentrations:

- Artificial Intelligence.
- Standard Computer Science.
- Data Communications.
- Data Analysis.
- Database Systems.
- Visual Computing.

Conditionally admitted students may register for a maximum of three graduate courses prior to successful completion of the Prerequisite Phase with consent of their advisor. Fully admitted students may register for a maximum of four Advanced Phase courses prior to passing the Core Knowledge Examination.
CORE KNOWLEDGE PHASE COURSES: COMPUTER SCIENCE
CSC 447 Concepts of Programming Languages
CSC 491 Design and Analysis of Algorithms
SE 455 Software Development Methods

CORE KNOWLEDGE EXAMINATION: COMPUTER SCIENCE
The examination covers the subject matter of the Core Knowledge Phase courses. Students take this examination following successful completion of the Core Knowledge Phase course requirements. The exam is offered in the Autumn, Winter, and Spring quarters. Students are allowed no more than two attempts at this examination. Two failures result in dismissal from the graduate program. Call the school at (312)362-8714 for further details on this examination.

Students who pass the Core Knowledge Examination with distinction and who maintain a 3.75 grade point average may graduate with distinction.

Note: The student must submit a written application three months before taking the Core Knowledge Examination. Only fully admitted students may take the examination.

ADVANCED PHASE COURSES: COMPUTER SCIENCE
Students must fulfill the course requirements of their concentration. Waiver of some of these courses is possible in individual cases with the approval of the director of graduate studies. Fully admitted students may register for a maximum of four Advanced Phase courses prior to passing the Core Knowledge Examination.

ARTIFICIAL INTELLIGENCE CONCENTRATION
CSC 456 Foundations of Intelligent Databases
CSC 457 Expert Systems
CSC 458 Symbolic Programming
CSC 556 Foundations of Artificial Intelligence

One two-course sequence chosen from Data Analysis, Database Systems, Data Communications, Software Engineering, Standard Computer Science or Visual Computing. (See the Two-Course Sequence listed in each concentration.)

One of the following:
CSC 585 Knowledge Representation
CSC 578 Neural Networks I

Two of the following:
CSC 578 Neural Networks I
CSC 580 Artificial Intelligence Programming
CSC 582 Machine Learning
CSC 583 Natural Language Processing
CSC 585 Knowledge Representation
CSC 587 Cognitive Science

One elective course (see the Elective Course Restriction section below).

STANDARD COMPUTER SCIENCE CONCENTRATION
One two-course sequence chosen from the following:
CSC 445 Computer Architecture AND
CSC 545 Advanced Computer Organization
CSC 446 Computer Operating Systems AND
CSC 546 Operating Systems Design
CSC 448 Compiler Design AND
CSC 548 Advanced Compiler Design
CSC 493 Automata Theory and Formal Grammars AND
CSC 490 Theory of Computation

OR

Two of the following:
CSC 502 Genetic Algorithms
CSC 503 Parallel Algorithms
CSC 504 Parallel Processing
CSC 591 Advanced Topics in Algorithms

One two-course sequence chosen from Artificial Intelligence, Data Analysis, Database Systems, Data Communications, Software Engineering or Visual Computing. (See the Two-Course Sequence listed in each concentration.)

Two of the following:
CSC 426 Values and Computer Technology
CSC 434 Object-Oriented Programming
CSC 445 Computer Architecture
CSC 446 Computer Operating Systems
CSC 448 Compiler Design
CSC 490 Theory of Computation
CSC 493 Automata Theory and Formal Grammars
CSC 495 Logic Design and Switching Theory
CSC 502 Genetic Algorithms
CSC 503 Parallel Algorithms
CSC 504 Parallel Processing
CSC 520 Advanced Discrete Structures
CSC 535 Formal Semantics of Programming Languages
CSC 545 Advanced Computer Organization
CSC 546 Operating Systems Design
CSC 548 Advanced Compiler Design
CSC 591 Topics in Algorithms
CSC 696 Master's Project
CSC 698 Master's Thesis
SE 431 Formal Software Specifications and Development I
SE 465 Software Engineering Principles
TDC 432 Computer and Information Systems Modeling

Four elective courses (see the Elective Course Restriction section below).

DATA ANALYSIS CONCENTRATION
CSC 423 Data Analysis and Regression
CSC 424 Advanced Data Analysis
CSC 428 Data Analysis for Experimenters

One two-course sequence chosen from Artificial Intelligence, Database Systems, Data Communications, Software Engineering, Standard Computer Science or Visual Computing OR the following advanced two-course sequence. (See the Two-course sequence below.)

TDC 432 Computer and Information Systems Modeling AND
TDC 489 Queueing Theory with Computing Applications
MASTER OF SCIENCE IN COMPUTER SCIENCE

Four of the following:
CSC 436 Foundations of Visual Computing
CSC 437 User Interface Design
CSC 449 Databases Systems
CSC 456 Foundations of Intelligent Databases
CSC 458 Symbolic Programming
CSC 470 Survey of Computer Graphics
CSC 481 Pattern Recognition and Machine Perception
CSC 485 Numerical Analysis
CSC 487 Operations Research I
CSC 502 Genetic Algorithms
CSC 578 Neural Networks I
CSC 582 Machine Learning
CSC 598 Topics in Data Analysis
CSC 696 Master’s Project
CSC 698 Master’s Thesis
HCI 422 Multimedia
SE 431 Formal Specifications and Development I
SE 433 Software Testing
SE 465 Software Engineering Principles
SE 467 Software Reliability
SE 468 Software Measurement
TDC 432 Computer and Information Systems Modeling
TDC 462 Data Communications
TDC 489 Queueing Theory with Applications

One elective. Courses taken from the two-course sequences may also fulfill Advanced Phase course requirements, thus increasing the number of electives, up to three.

DATABASE SYSTEMS CONCENTRATION
CSC 449 Database Systems
CSC 451 Database Design
CSC 452 Database Programming

One two-course sequence chosen from Artificial Intelligence, Data Analysis, Data Communications, Software Engineering, Standard Computer Science, or Visual Computing. (See the two-course sequence section below.)

Three of the following, not previously applied above:
CSC 423 Data Analysis and Regression
CSC 434 Object-Oriented Programming
CSC 435 Multimedia
CSC 456 Foundation of Intelligent Databases
CSC 481 Pattern Recognition and Image Processing
CSC 503 Parallel Algorithms
CSC 549 Advanced Database Systems
CSC 550 Object-Oriented Databases
CSC 551 Distributed Database Systems
CSC 556 Foundations of Artificial Intelligence
CSC 585 Knowledge Representation
CSC 589 Topics in Databases
CSC 696 Master’s Project
CSC 698 Master's Thesis
IS 475 Information Systems Analysis and Design
IS 575 Information Retrieval
SE 465 Software Engineering Principles
TDC 489 Queueing Theory and Its Applications
TDC 513 Client/Server Technologies
TDC 561 Distributed Processing

Two electives courses (see the Elective Course Restrictions section below).

DATA COMMUNICATIONS CONCENTRATION

Two-course sequence:

TDC 463 Computer Networks and Data Systems **AND**
TDC 561 Distributed Processing

One two-course sequence chosen from Artificial Intelligence, Data Analysis, Database Systems, Software Engineering, Standard Computer Science or Visual Computing. (See the Two-Course Sequence section listed in each concentration.)

TDC 462 Data Communications

Three of the following courses:

TDC 432 Computer and Information Systems Modeling
TDC 489 Queueing Theory with Computer Applications
TDC 513 Client/Server Technologies
TDC 562 Computer Communications Network Design and Analysis
TDC 563 Protocols and Techniques for Data Networks
TDC 564 Local Area Networks
TDC 565 Voice and Data Integration
TDC 566 Integrated Services Digital Networks
TDC 568 Network Management
TDC 696 Master's Project
TDC 698 Master's Thesis

Two elective courses (see the Elective Course Restrictions section below).

VISUAL COMPUTING CONCENTRATION

CSC 436 Foundations of Visual Computing

One of the following two-course sequences:

CSC 437 User Interface Design **AND**
CSC 537 User Interface Evaluation
CSC 469 Computer Graphics **AND**
CSC 539 Computer Graphics II
CSC 481 Pattern Recognition and Image Processing **AND**
CSC 584 Computer Vision

One of the following not previously applied above:

CSC 437 User Interface Design
CSC 469 Computer Graphics I
CSC 481 Pattern Recognition and Image Processing
Three of the following courses, not previously applied above, including at least one of **CSC 590, 592 or 595**:

- CSC 437 User Interface Design
- CSC 456 Foundations of Intelligent Databases
- CSC 469 Computer Graphics I
- CSC 481 Pattern Recognition and Image Processing
- CSC 498 Digital Signal Processing
- CSC 536 Modelling for Computer Aided Design
- CSC 537 User Interface Evaluation
- CSC 538 Vision Systems
- CSC 539 Computer Graphics II
- CSC 570 Visualization
- CSC 578 Neural Networks I
- CSC 582 Machine Learning
- CSC 584 Computer Vision
- CSC 587 Cognitive Science
- CSC 590 Topics in User Interfaces
- CSC 592 Topics in Computer Vision and Pattern Recognition
- CSC 595 Topics in Graphics

Three elective courses (see the Elective Course Restrictions section below).

TWO-COURSE SEQUENCES

One two-course sequence from the following list will fulfill the "two-course sequence" requirement. The chosen sequence must be from an area other than the student's declared concentration. Consult individual concentration requirements for acceptable choices.

Artificial Intelligence

- CSC 456 Foundations of Intelligent Databases AND
- CSC 457 Expert Systems

Standard Computer Science

- CSC 445 Computer Architecture AND
- CSC 545 Advanced Computer Organization
- CSC 446 Computer Operating Systems AND
- CSC 546 Operating Systems Design
- CSC 448 Compiler Design AND
- CSC 548 Advanced Compiler Design
- CSC 493 Automata Theory and Formal Grammars AND
- CSC 490 Theory of Computation

OR

Two of the following:

- CSC 502 Genetic Algorithms
- CSC 503 Parallel Algorithms
- CSC 504 Parallel Processing
- CSC 591 Advanced Topics in Algorithms
Data Analysis Concentration
CSC 423 Data Analysis and Regression **AND**
One of the following:
CSC 424 Advanced Data Analysis
CSC 428 Data Analysis for Experimenters

Database Systems Concentration
CSC 449 Database Systems **AND**
One of the following:
CSC 451 Database Design
CSC 452 Database Programming
CSC 549 Advanced Database Systems

Data Communications Concentration
TDC 463 Computer Networks and Data Systems **AND**
TDC 561 Distributed Processing

Software Engineering
SE 431 Formal Software Specification and Development I **AND**
SE 465 Software Engineering Principles

Visual Computing Concentration
Two of the following:
CSC 436 Foundations of Visual Computing
CSC 437 User Interface Design
CSC 469 Computer Graphics I
CSC 470 Survey of Computer Graphics
CSC 481 Pattern Recognition and Image Processing

PERSONALIZED CONCENTRATION

Students with superior results on the Core Knowledge Phase examination may be allowed to personalize their Advanced Phase requirements. After planning their personalized concentration with their advisor, they must submit the plan to the director of graduate studies for approval. Permission for the personalized concentration must be obtained prior to completion of most of the concentration courses.

DISTINGUISHED SCHOLARS PROGRAM

Students with a superior undergraduate academic record who have completed sufficient undergraduate coursework in Computer Science are eligible for the Distinguished Scholars Program (DSP) within the Master of Science degree in Computer Science.

ADVANCED PLACEMENT

Students may only apply for the Distinguished Scholars Program at the time they apply for admission to the graduate program in Computer Science. The following are minimal requirements for admission with advanced placement into the graduate degree programs in Computer Science:

- Bachelor's degree from an accredited institution.
- Completion of undergraduate courses equivalent to the following prior to application to the Graduate Program.
CSC 215 Introduction to Structured Programming Using C++
CSC 310-311 Principles of Computer Science I-II
CSC 323 Introduction to Data Analysis
CSC 342 File Processing and Data Management
MAT 140-141 Discrete Mathematics I-II
MAT 150-151 Calculus I-II
MAT 220 Linear Algebra with Applications

Any five of the following courses:
CSC 321 Design and Analysis of Algorithms
CSC 324 Data Analysis and Regression
CSC 325 Advanced Topics in C and UNIX
CSC 334 Advanced Data Analysis
CSC 343 Introduction to Operating Systems
CSC 345 Computer Architecture
CSC 347 Concepts of Programming Languages
CSC 348 Introduction to Compiler Design
CSC 349 Data Bases and Data Management
CSC 365 Introduction to Software Engineering
CSC 373 Information Systems
CSC 380 Artificial Intelligence

DSP students are not required to take Graduate Assessment Examinations on prerequisite courses.

- A cumulative GPA of 3.50 or better on a 4.00 scale in undergraduate courses.
- Submission of three letters of recommendation.
- Prior to taking any graduate courses, meeting with an advisor to complete an application form for the DSP and propose a course of study to prepare for the Core Knowledge examination. DSP students are encouraged to take this examination after completing as few Core Knowledge courses as possible.
- Passing the Core Knowledge examination in Computer Science from the regular degree program prior to completion of at most five graduate courses. DSP students will normally take the examination for the first time without completing all Core Knowledge courses.

DEGREE REQUIREMENTS

Successful completion of the Master of Science degree in Computer Science through the Distinguished Scholars Program consists of:

- Completion of at least 13 graduate courses.
- Maintenance of a grade point average of at least a 3.50.
- Completion of at least 3 courses from one of the concentration areas of the Ph.D. program as well as any necessary prerequisite courses.
- Completion of a master's thesis (CSC 698) in their area of concentration.

The remaining courses are elective courses. However, courses taken to prepare for the Core Knowledge examination reduce the number of elective courses.
MASTER OF SCIENCE IN COMPUTER SCIENCE

ADMISSION TO THE PH.D. PROGRAM
Students in the Distinguished Scholars Program are eligible for consideration for early admission into the Ph.D. program in Computer Science. All admission requirements for the Ph.D. program must be met. However, the application will only be considered by the Ph.D. admissions committee after completion of the DSP Advanced Placement requirements. Ph.D. students are normally required to pass the doctoral candidacy examination in three areas. However, DSP students who are admitted to the doctoral program may have the examination in their concentration area waived at the discretion of their master's thesis committee. A total of at least 112 hours of credit is required to complete the doctoral program, including 52 hours for the M.S. degree plus an additional 60 hours or more as part of the doctoral requirements.

ELECTIVE COURSE RESTRICTIONS
Elective courses are those courses in the range 420-599 and 690-699. Credit will be given for courses taken outside the school only if they are approved by the associate dean of the School of Computer Science, Telecommunications and Information Systems (consult the appropriate section on the transfer credit policies of the School). An application may be obtained from the school.

Courses suggested for the Prerequisite Phase never count for elective credit. (This includes CSC 411, 415, 416, 417 and 500-level GSB courses.) Courses required for the Core Knowledge Phase only count for elective credit if they are not required for the student’s own concentration.

Any course required for the student’s concentration but taken as part of the requirements of another degree earned by the student may be waived but cannot be used for elective credit. Conditionally admitted students may not receive elective credit for courses taken prior to passing the Graduate Assessment Examination. Fully admitted students will receive elective credit for courses taken before passing the Core Knowledge Examination only if the total number of advanced courses taken does not exceed four.

GRADE REQUIREMENTS
Fully admitted students must maintain an average of at least 2.50 (out of a maximum of 4.00). Students who do not maintain this average are dismissed from the program. The school will notify such students as soon as possible. However, students who take courses after their average falls below 2.50, but before official notification, will not receive any special tuition refunds.

In order to graduate, students must have an overall grade point average no less than 2.50 (out of a maximum of 4.00).

Incomplete grades are only given if the course instructor considers them justified and if the student obtains the approval of the associate dean. The Student Services office will provide the appropriate permission form. An incomplete must be completed within one year or the grade may be changed to an F.
MASTER OF SCIENCE IN HUMAN-COMPUTER INTERACTION

MASTER OF SCIENCE: HUMAN-COMPUTER INTERACTION

The master's degree program consists of the following elements:
- Prerequisite Competencies
- Fundamentals Courses
- Core Courses
- Advanced Phase
- Capstone Course

The Prerequisite Competencies guarantee that all students have a common background. Successful completion of the prerequisite competencies constitutes part of the admission requirements for the master's degree program. The Fundamentals, Core and Advanced Phase constitute the degree program.

ADMISSION REQUIREMENTS

All applicants who satisfy general graduate college admission requirements initially receive conditional admittance and may then pursue a degree program. For full admission to a degree program, students must have the following:
- Bachelor's degree
- Counseling session with a graduate counselor.
- A grade of 'B-' or better in the prerequisite competency courses.

The following prerequisite competency courses are required. These requirements can be met by taking the courses at DePaul and receiving a grade of at least B-. Students with related course work or experience should consult a graduate advisor for possible waiver of prerequisite course requirements.

PREREQUISITE COMPETENCIES: HUMAN-COMPUTER INTERACTION

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 105</td>
<td>Foundation Design</td>
</tr>
<tr>
<td>ART 260</td>
<td>Graphic Design I</td>
</tr>
<tr>
<td>CSC 150</td>
<td>Introduction to Computer Systems and Programming</td>
</tr>
<tr>
<td>CSC 240</td>
<td>Personal Computing for Programmers</td>
</tr>
<tr>
<td>CSC 255</td>
<td>Information Structures and Representations</td>
</tr>
<tr>
<td>CSC 323</td>
<td>Data Analysis and Statistical Software I</td>
</tr>
<tr>
<td>PSY 105</td>
<td>Introductory Psychology I</td>
</tr>
<tr>
<td>PSY 347</td>
<td>Social Psychology</td>
</tr>
</tbody>
</table>

DEGREE REQUIREMENTS

Students must complete 13 courses (52 hours) beyond the prerequisite competencies and after receiving full degree-seeking admission. Successful completion of the Master of Science in Human-Computer Interaction consists of:
- Completion of the Fundamentals courses
- Completion of the Core courses
- Completion of the Advanced Phase courses
- Completion of the Capstone course

Conditionally admitted students may register for at most three graduate courses prior to successful completion of the prerequisite competencies. Conditionally admitted students must receive written permission from their advisor to take Advanced Phase courses.

FUNDAMENTALS COURSES: HUMAN-COMPUTER INTERACTION

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 461</td>
<td>Graphic Design II</td>
</tr>
<tr>
<td>HCI 400</td>
<td>Analysis and Design for HCI</td>
</tr>
<tr>
<td>PSY 680</td>
<td>Industrial and Organizational Psychology</td>
</tr>
<tr>
<td>PSY 443</td>
<td>Psychology of Human Performance</td>
</tr>
</tbody>
</table>
CORE COURSES: HUMAN-COMPUTER INTERACTION

HCI 410 Introduction to Human-Computer Interaction
HCI 430 Prototyping for Human-Computer Interaction I
HCI 460 Evaluating Human-Computer Interaction

ADVANCED PHASE COURSES: HUMAN-COMPUTER INTERACTION
Conditionally admitted students must receive written permission from their advisor to take Advanced Phase courses.
Five courses, to be taken from at least two categories:

DESIGN

ART 405 Advanced Color Design
ART 462 Publication Design
HCI 422 Multimedia
HCI 511 Designing for Disabilities
HCI 512 Designing for Visualization
HCI 590 Topics in Human-Computer Interaction

COMPUTER SCIENCE

CSC 436 Foundations of Visual Computing
CSC 469 Computer Graphics I
CSC 470 Survey of Computer Graphics
CSC 539 Computer Graphics II
CSC 570 Visualization
HCI 540 User Interface Implementation I

EVALUATION

CSC 423 Data Analysis and Regression
CSC 424 Advanced Data Analysis
PSY 402 Perceptual Processes
PSY 404 Learning and Cognitive Processes
PSY 440 Psychology of Work and Motivation
PSY 441 Psychology of Leadership
PSY 446 Psychological Theories of Organizations
PSY 447 Organizational Consultation

CAPSTONE COURSE: HUMAN-COMPUTER INTERACTION

HCI 594 Human-Computer Interaction Capstone

GRADE REQUIREMENTS

Fully admitted students must maintain an average of at least 2.50 (out of a maximum of 4.00). Students who do not maintain this average are dismissed from the program. The school will notify such students as soon as possible. However, students who take courses after their average falls below 2.50 but before official notification will not receive any special tuition refunds.

In order to graduate, students must have an overall grade point average no less than 2.50 (out of a maximum of 4.00).

Incomplete grades are only given if the course instructor considers them justified and if the student obtains the associate dean's permission. Incomplete grade request forms are available in the Student Services Office. An incomplete must be completed within one year or the grade may be changed to an F.
MASTER OF SCIENCE IN INFORMATION SYSTEMS

The master's degree program consists of three phases:

- **Prerequisite Phase**
- **Core Knowledge Phase**
- **Advanced Phase**

The Prerequisite Phase guarantees that all students have a common background. Successful completion of the Prerequisite Phase constitutes part of the admission requirements for the master's degree program.

The Core Knowledge and Advanced Phase constitute the degree program. The Core Knowledge Phase prepares students for their chosen concentration. In the Advanced Phase, students specialize in their concentration area. The concentration requirements are tailored to meet individual student's needs. The student must pass an examination to move from one phase to the other.

ADMISSION REQUIREMENTS

All applicants who satisfy general graduate school admission requirements initially receive conditional admittance and may then pursue a degree program.

For full admission to a degree program, students must have the following:

- Bachelor's degree (not necessarily in computer science).
- Counseling session with a graduate counselor.
- A grade of B− or better in the Prerequisite Phase courses.

The following courses are required as part of the Prerequisite Phase. Those students with extensive coursework and/or experience in the computer science field may take an equivalency exam, the Graduate Assessment Exam (GAE) for the courses listed as Graduate Assessment Courses. The exam is offered at the beginning of each month. Applications for the exam must be received at least one week before the exam. Exam dates, application forms and a study guide are available from the school (phone 312/362-8714). For more information on this exam, contact a graduate advisor.

GRADUATE ASSESSMENT PREREQUISITE PHASE COURSES

INFORMATION SYSTEMS

PROGRAMMING SKILLS
Suggested courses are:

CSC 215 Introduction to Programming Using C++ OR
CSC 225 C++ for Programmers

APPLICATIONS DEVELOPMENT
Suggested course is:
CSC 203 COBOL Programming

PERSONAL COMPUTING SKILLS
Suggested course is:
CSC 240 Personal Computing for Programmers
MASTER OF SCIENCE IN INFORMATION SYSTEMS

OTHER PREREQUISITE PHASE COURSES
The following competencies are required as part of the Prerequisite Phase. Equivalency exams are not offered for the following courses. Students with related coursework and/or experience in these areas should consult with a graduate advisor.

QUANTITATIVE METHODS
The quantitative methods requirements are met by taking courses equivalent to the following:

MAT 145 Calculus for Information Systems OR **MAT 150-151**
CSC 323 Data Analysis and Statistical Software I

The Computer Career Program (CCP) offered through the School’s Institute for Professional Development may fulfill part of the requirement for prerequisite phase courses.

DEGREE REQUIREMENTS
Students must complete 13 courses (52 hours) beyond the Prerequisite Phase and after receiving full degree-seeking admission.

Successful completion of the Master of Science in Information Systems consists of:

- Completion of Core Knowledge Phase courses.
- Passing the Core Knowledge examination.
- Completion of Advanced Phase courses.

CORE KNOWLEDGE PHASE COURSES: INFORMATION SYSTEMS
Conditionally admitted students may register for a maximum of three graduate courses prior to successful completion of the Prerequisite Phase with consent of their advisor. The required courses are:

CSC 449 Database Systems
IS 475 Information Systems Analysis and Design
TDC 461 Basic Communications Systems

CORE KNOWLEDGE EXAMINATION: INFORMATION SYSTEMS
The examination covers the subject matter of the Core Knowledge Phase courses. Students take this examination as soon as they successfully complete their Core Knowledge Phase course requirements. The exam is offered in the Autumn, Winter, and Spring quarters. Students are allowed no more than two attempts at this examination. Two failures result in dismissal from the graduate program. Call the school at (312)362-8714 for further details on this examination.

Students who pass the Core Knowledge Examination with distinction and who maintain a 3.75 grade point average may graduate with distinction.

Note: The student must submit a written application three months before taking the Core Knowledge Examination. Only fully admitted students may take the examination.

ADVANCED PHASE COURSES: INFORMATION SYSTEMS
Waiver of some of these courses is possible in individual cases with the approval of a faculty advisor.

Fully admitted students may register for a maximum of four Advanced Phase courses prior to passing the Core Knowledge Examination.
Two courses in one of the following areas (selected in consultation with the faculty advisor):
- Communications
- Database Systems
- Software Engineering
- Visual Computing

Four of the following:

- **IS 427** Software Quality Management
- **IS 482** Legal Aspects of Data Processing
- **IS 483** Information Systems Management
- **IS 484** Computerized Accounting Systems
- **IS 453** Advanced Topics for Systems Development
- **IS 454** Information Engineering
- **IS 471** Software Maintenance
- **IS 472** Computer Security
- **IS 474** Decision Support Systems and Expert Systems
- **IS 477** Management of Information Technology
- **IS 596** Topics in Information Systems
- **SE 430** Object-Oriented Modeling
- **IS 690** Research Seminar
- **IS 696** Master's Project
- **IS 698** Master's Thesis

Four elective courses.

ELECTIVE COURSE RESTRICTIONS

Elective courses are those courses in the range 420-599 and 690-699. Credit will be given for courses taken outside the school only if they are approved by the associate dean of the School of Computer Science, Telecommunications and Information Systems (consult the appropriate section on the transfer credit policies of the school). An application can be obtained from the school.

Courses suggested for the Prerequisite Phase never count for elective credit. (This includes CSC 411, 415, 416, 417 and 500-level GSB courses.) Courses required for the Core Knowledge Phase only count for elective credit if they are not required for the student's own concentration.

Any course required for the student's concentration but taken as part of the requirements of another degree earned by the student may be waived but cannot be used for elective credit. Conditionally admitted students may not receive elective credit for courses taken prior to passing the Graduate Assessment Examination. Fully admitted students will receive elective credit for courses taken before passing the Core Knowledge Examination only if the total number of advanced courses taken does not exceed four.

GRADE REQUIREMENTS

Fully admitted students must maintain an average of at least 2.50 (out of a maximum of 4.00). Students who do not maintain this average are dismissed from the program. The school will notify such students as soon as possible. However, students who take courses after their average falls below 2.50, but before official notification, will not receive any special tuition refunds.

In order to graduate, students must have an overall grade point average no less than 2.50 (out of a maximum of 4.00).

Incomplete grades are only given if the course instructor considers them justified and if the student obtains the associate dean's permission. The Student Services office will provide the appropriate permission form. An incomplete must be completed within one year or the grade may be changed to an F.
MASTER OF SCIENCE IN SOFTWARE ENGINEERING

The master's degree program consists of three phases:

- Prerequisite Phase.
- Core Knowledge Phase.
- Advanced Phase.

The Prerequisite Phase is required for students who need a more complete background in Computer Science. The Core Knowledge Phase prepares students for their chosen concentration, while the Advanced Phase provides for study of selected, more advanced topics.

ADMISSION REQUIREMENTS

For full admission to the degree program, students must have the following:

- Bachelor of Science degree in Computer Science, Computer Engineering, or a closely related field. Applicants with degrees in other fields, but with a strong background in mathematics and/or extensive programming experience will be considered for either full admission or conditional admission. Individuals with little or no experience in computing should acquire a stronger background before applying.

- Counseling session with a Software Engineering counselor.

- Completion of courses equivalent to the Prerequisite Phase courses. Applicants may be fully admitted with a limited number of Prerequisite Phase courses. These courses must be completed with a grade of B- or better before enrolling in any Core Knowledge Phase courses that require them as prerequisites.

Applicants who have a strong academic background but who have not completed a sufficient number of Prerequisite Phase courses may be admitted conditionally. They must complete the full Prerequisite Phase requirements as listed below.

GRADUATE ASSESSMENT PREREQUISITE PHASE COURSES: SOFTWARE ENGINEERING

The following courses are required as part of the Prerequisite Phase. Those students with appropriate coursework and/or computing experience may take an equivalency exam, the Graduate Assessment Exam (GAE), for the courses listed as Graduate Assessment Courses. The Exam is offered at the beginning of each month. Applications for the exam must be received at least one week before the exam. Exam dates, application forms and a study guide are available from the department (phone 312/362-8714). For more information on this exam, contact a graduate advisor. A grade of B- or better is required in the Prerequisite Phase courses.

GRADUATE ASSESSMENT PREREQUISITE PHASE COURSES: PROJECT MANAGEMENT

CSC 225 C++ for Programmers
CSC 315 Analysis and Design Techniques
CSC 415 Foundations of Computer Science I. Prerequisites: MAT 140 and CSC 225.
MAT 140 Discrete Mathematics

Two of the following:

CSC 349 Databases and Data Management. Prerequisite: CSC 415.
HCI 322 Multimedia. Prerequisite: CSC 311 or CSC 255.
TDC 361 Basic Communications Systems
GRADUATE ASSESSMENT PREREQUISITE PHASE COURSES: SOFTWARE DEVELOPMENT

CSC 225 C++ for Programmers
CSC 315 Analysis and Design Techniques
CSC 415 Foundations of Computer Science I. Prerequisites: MAT 140 and CSC 225.
CSC 416 Foundations of Computer Science II. Prerequisite: CSC 415.
CSC 417 Foundations of Computer Science III. Prerequisite: CSC 415.
MAT 140 Discrete Mathematics

OTHER PREREQUISITE PHASE COURSES

The following competencies are required as part of the Prerequisite Phase. Equivalency exams are not offered for the following courses. Students with related coursework and/or experience in these areas should consult with a graduate advisor.

CSC 323 Data Analysis and Statistical Software I
MAT 150 Calculus I
MAT 151 Calculus II
MAT 220 Linear Algebra with Applications

DEGREE REQUIREMENTS

Students must complete 14 courses (56 hours) beyond the Prerequisite Phase and after receiving full degree-seeking admission. Successful completion of the Software Engineering Program consists of:

- Completion of Core Knowledge Phase courses with a grade of B or better. Students with prior coursework equivalent to any of the Core Knowledge Phase courses may be allowed by a Software Engineering counselor to take other related advanced courses as substitutes.
- Completion of Advanced Phase courses.
- Successful defense of the thesis. Students should choose a thesis advisor before the end of the first quarter following completion of the Core Knowledge Phase. They should form a thesis committee, consisting of three faculty members, including their thesis advisor, by the end of the next quarter. They must complete the course CSC 690 Research Seminar, write a thesis proposal, and obtain approval of the thesis proposal from their thesis committee before enrolling in the course CSC 698 Master's Thesis.

CORE KNOWLEDGE PHASE COURSES: SOFTWARE ENGINEERING

Students may register for graduate courses only if they have met all prerequisite requirements before enrolling in those courses. The required courses are:

SOFTWARE DEVELOPMENT CONCENTRATION

CSC 423 Data Analysis and Regression
CSC 430 Object-Oriented Modeling
CSC 431 Formal Software Specifications and Development I
CSC 455 Software Development Methods
CSC 465 Software Engineering Principles

PROJECT MANAGEMENT CONCENTRATION

CSC 423 Data Analysis and Regression
CSC 430 Object-Oriented Modeling
CSC 465 Software Engineering Principles
CSC 468 Software Measurement and Project Estimation
CSC 477 Software and System Project Management
ADVANCED PHASE COURSES: SOFTWARE ENGINEERING
Conditionally admitted students receive credit for Advanced Phase courses only after successful completion of the Prerequisite Phase.

SE 690 Research Seminar
SE 698 Master's Thesis

Five of the following, other than those required for your concentration and other than those cross-listed with one of your prerequisites. At least two of these must be software engineering courses.

CSC 426 Values and Computer Technology
CSC 428 Data Analysis for Experimenters
CSC 434 Object-Oriented Programming
CSC 447 Concepts of Programming Languages
CSC 449 Database Systems
HCI 401 User Interface Design
IS 553 Advanced Topics for System Development
IS 571 Software Maintenance
SE 431 Formal Software Specification and Development I
SE 433 Software Testing
SE 455 Software Development Methods
SE 466 Software Engineering Projects
SE 467 Software Reliability
SE 468 Software Measurement and Project Estimation
SE 477 Software and System Project Management
SE 480 Software Architecture
SE 529 Software Risk Management
SE 531 Formal Software Specifications and Development II
SE 533 Software Validation and Verification
SE 558 Software Methodologies

Two elective courses (See Elective Course Restrictions below).

Software Engineering two course sequence for non-Software Engineering students:

SE 465 Software Engineering Principles AND
SE 431 Formal Software Specification and Development I

SOFTWARE MANAGEMENT PROGRAM
Students admitted to the Software Engineering M.S. degree program are eligible to participate in the Software Management Program which provides early consideration for entry into the Ph.D. program. To be admitted to this program a student must have completed all prerequisite and core courses for M.S. in Software Engineering, must pass the Doctoral Candidacy examination in Software Engineering, and apply and be admitted to the Ph.D. program.

To complete this program, admitted students must meet all doctoral requirements, and qualify in the Software Management concentration area.

A total of at least 116 hours of credit is required to complete the Software Management program, including at least 56 hours for the M.S. degree plus an additional 60 hours or more as part of the doctoral requirements.
ELECTIVE COURSE RESTRICTIONS

Elective courses are those courses in the range 420-599 and 690-699. Credit will be given for courses taken outside the school only if they are approved by the associate dean of the School of Computer Science, Telecommunications and Information Systems (consult the appropriate section on the transfer credit policies of the School). An application can be obtained from the school.

Courses suggested for the Prerequisite Phase never count for elective credit (including CSC 411, 415, 416, 417 and 500-level GSB courses). For students in the Project Management Concentration, graduate courses cross-listed with their two prerequisite courses chosen from CSC 349 (CSC 449), HCI 322 (HCI 422), and CSC 361 (TDC 461) do not count for graduate credit, but the other graduate course may be counted with written permission from a software engineering advisor.

Any required course taken as part of the requirements of another degree earned by the student may be waived but cannot be used for elective credit. Conditionally admitted students may not receive elective credit for courses taken prior to passing the Graduate Assessment Examination.

GRADE REQUIREMENTS

Fully admitted students must maintain an average of at least 2.50 (out of a maximum of 4.00). Students who do not maintain this average are dismissed from the program. The school will notify such students as soon as possible. However, students who take courses after their average falls below 2.50, but before official notification, will not receive any special tuition refunds.

In order to graduate, students must have an overall grade point average no less than 2.50 (out of a maximum of 4.00).

Incomplete grades are only given if the course instructor considers them justified and if the student obtains the associate dean's permission. The Student Services office will provide the appropriate permission form. An incomplete must be completed within one year or the grade may be changed to an F.
MASTER OF SCIENCE IN TELECOMMUNICATION SYSTEMS

The master's degree program consists of three phases:

- Prerequisite Phase.
- Core Knowledge Phase.
- Advanced Phase.

The Prerequisite Phase guarantees that all students have a common background. Successful completion of the Prerequisite Phase constitutes part of the admission requirements for the master's degree program.

The Core Knowledge and Advanced Phase constitute the degree program. The Core Knowledge Phase prepares students for their chosen concentration. In the Advanced Phase, students specialize in their concentration area. The concentration requirements are tailored to meet individual student’s needs. The student must pass an examination to move from one phase to another.

Two concentrations are offered: the Standard Concentration provides a standard set of courses emphasizing telecommunications systems management. The Computer Science Concentration requires more technical background and places more emphasis on systems development and analysis.

ADMISSION REQUIREMENTS

All applicants who satisfy general graduate school admission requirements initially receive conditional admittance and may then pursue a degree program.

For full admission to a degree program, students must have the following:

- Bachelor's degree (not necessarily in computer science).
- Counseling session with a graduate counselor.
- A grade of B- or better in the Prerequisite Phase courses.

The following courses are required as part of the Prerequisite Phase. Those students with extensive coursework and/or experience in the computer science field may take an equivalency exam, the Graduate Assessment Exam (GAE) for the courses listed as Graduate Assessment Courses. The exam is offered at the beginning of each month. Applications for the exam must be received at least one week before the exam. Exam dates, application forms and a study guide are available from the Student Services office (312/362-8714). For more information on this exam, contact a graduate advisor.

GRADUATE ASSESSMENT PREREQUISITE PHASE COURSES:
TELECOMMUNICATION SYSTEMS

PROGRAMMING SKILLS
CSC 215 Introduction to Programming Using C++ OR
CSC 225 C++ for Programmers

PRINCIPLES OF COMPUTER SCIENCE (Required for Computer Science Concentration only)

Sequence A:
CSC 310 Principles of Computer Science I. **Prerequisite: CSC 215**
CSC 415 Foundations of Computer Science I. **Prerequisite: CSC 310**

Sequence B: (restricted to graduate students with programming experience)
CSC 415 Foundations of Computer Science I. **Prerequisite: CSC 225**

Those students who fulfill the C Language requirement with CSC 215 must complete Sequence A. Students with programming experience and who have met the requirement for CSC 225 normally follow it with Sequence B.
MASTER OF SCIENCE IN
TELECOMMUNICATION SYSTEMS

SYSTEMS FUNDAMENTALS
TDC 411 Computers in Information Systems and Telecommunications OR

May be satisfied by the following two undergraduate courses:
CSC 343 Introduction to Operating Systems. Prerequisite: CSC 415 AND
CSC 345 Computer Architecture. Prerequisite: CSC 415

OTHER PREREQUISITE PHASE COURSES: TELECOMMUNICATION SYSTEMS
The following competencies are required as part of the Prerequisite Phase. Equivalency exams are not offered for the following courses. Students with related coursework and/or experience in these areas should consult with a graduate advisor.

PHYSICS
PHY 405 Physical Principles of Communication Systems

QUANTITATIVE METHODS
CSC 323 Data Analysis and Statistical Software I
MAT 145 Calculus for Information Systems

DEGREE REQUIREMENTS
Students must complete 13 courses (52 hours) beyond the Prerequisite Phase and after receiving full degree-seeking admission.

Successful completion of the Master of Science in Telecommunication Systems consists of:

• Completion of Core Knowledge Phase courses.
• Passing the Core Knowledge examination.
• Completion of Advanced Phase courses.

The Core Knowledge and Advanced Phase courses are chosen from one of the following concentrations:

• Standard Telecommunication Systems.
• Computer Science.

CORE KNOWLEDGE PHASE COURSES: TELECOMMUNICATION SYSTEMS
Conditionally admitted students may register for a maximum of three graduate courses prior to successful completion of the Prerequisite Phase.

TDC 461 Basic Communication Systems
TDC 462 Data Communications
TDC 463 Computer Networks and Data Systems

CORE KNOWLEDGE EXAMINATION: TELECOMMUNICATION SYSTEMS
Students may take this examination as soon as they have successfully completed these three courses. The exam is offered in the Autumn, Winter, and Spring quarters. Students are allowed no more than two attempts at this examination. Two failures result in dismissal from the graduate program. Call the school at (312)362-8714 for further details on this examination.

Students who pass the Core Knowledge Examination with distinction and who maintain a 3.75 grade point average may graduate with distinction.

Note: The student must submit a written application three months before taking the Core Knowledge Examination. Only fully admitted students may take the examination.
ADVANCED PHASE COURSES: TELECOMMUNICATION SYSTEMS

Students must fulfill the course requirements of their concentration. Waiver of some of these courses is possible in individual cases with the approval of the director of graduate studies.

Conditionally admitted students receive credit for Advanced Phase courses only after successful completion of the Prerequisite Phase. Fully admitted students may register for a maximum of four Advanced Phase courses prior to passing the Core Knowledge Examination.

STANDARD TELECOMMUNICATIONS CONCENTRATION

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDC 464</td>
<td>Voice Communication Networks</td>
</tr>
<tr>
<td>TDC 476</td>
<td>Economics of Telecommunications Systems</td>
</tr>
<tr>
<td>TDC 511</td>
<td>Telecommunications Practicum</td>
</tr>
<tr>
<td>TDC 512</td>
<td>Cellular and Wireless Telecommunications</td>
</tr>
<tr>
<td>TDC 567</td>
<td>Telecommunications System Design and Management</td>
</tr>
<tr>
<td>TDC 569</td>
<td>Telecommunications Regulation, Policy and Law</td>
</tr>
</tbody>
</table>

Two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 577</td>
<td>Management of Information Technology</td>
</tr>
<tr>
<td>TDC 514</td>
<td>Computer Telephony</td>
</tr>
<tr>
<td>TDC 563</td>
<td>Protocols and Techniques for Data Networks</td>
</tr>
<tr>
<td>TDC 564</td>
<td>Local Area Networks</td>
</tr>
<tr>
<td>TDC 565</td>
<td>Voice and Data Integration</td>
</tr>
<tr>
<td>TDC 566</td>
<td>Integrated Services Digital Networks</td>
</tr>
<tr>
<td>TDC 568</td>
<td>Network Management</td>
</tr>
</tbody>
</table>

Two elective courses. (See Elective Course Restriction section below.)

COMPUTER SCIENCE CONCENTRATION

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDC 511</td>
<td>Telecommunications Practicum</td>
</tr>
<tr>
<td>TDC 561</td>
<td>Distributed Computing</td>
</tr>
</tbody>
</table>

Four of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 446</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>TDC 432</td>
<td>Computer and Information System Modeling</td>
</tr>
<tr>
<td>TDC 464</td>
<td>Voice Communications Networks</td>
</tr>
<tr>
<td>TDC 489</td>
<td>Queuing Theory with Computer Applications</td>
</tr>
<tr>
<td>TDC 513</td>
<td>Client/Server Technologies</td>
</tr>
<tr>
<td>TDC 562</td>
<td>Computer Communication Network Design and Analysis</td>
</tr>
<tr>
<td>TDC 563</td>
<td>Protocols and Techniques for Data Networks</td>
</tr>
<tr>
<td>TDC 564</td>
<td>Local Area Networks</td>
</tr>
<tr>
<td>TDC 565</td>
<td>Voice and Data Integration</td>
</tr>
<tr>
<td>TDC 566</td>
<td>Integrated Services Digital Networks</td>
</tr>
<tr>
<td>TDC 568</td>
<td>Network Management</td>
</tr>
</tbody>
</table>

Four elective courses. (See Elective Course Restriction section below.)

ELECTIVE COURSE RESTRICTIONS

Elective courses are those courses in the range 420-599 and 690-699. Credit will be given for courses taken outside the school only if they are approved by the associate dean of the School of Computer Science, Telecommunications and Information Systems (consult the appropriate section on the transfer credit policies of the school) and the director of graduate studies. An application can be obtained from the school.
Courses suggested for the Prerequisite Phase never count for elective credit. (This includes CSC 411, 415, 416, 417 and 500-level GSB courses.) Courses required for the Core Knowledge Phase only count for elective credit if they are not required for the student's own concentration.

Any course required for the student's concentration but taken as part of the requirements of another degree earned by the student may be waived but cannot be used for elective credit. Conditionally admitted students may not receive elective credit for courses taken prior to passing the Graduate Assessment Examination. Fully admitted students will receive elective credit for courses taken before passing the Core Knowledge Examination only if the total number of advanced courses taken does not exceed three.

GRADE REQUIREMENTS

Fully admitted students must maintain an average of at least 2.50 (out of a maximum of 4.00). Students who do not maintain this average are dismissed from the program. The school will notify such students as soon as possible. However, students who take courses after their average falls below 2.50, but before official notification, will not receive any special tuition refunds.

In order to graduate, students must have an overall grade point average no less than 2.50 (out of a maximum of 4.00).

Incomplete grades are only given if the course instructor considers them justified and if the student obtains the associate dean's permission. The director of graduate studies will provide the appropriate permission form. An incomplete must be completed within one year or the grade may be changed to an F.
MASTER OF SCIENCE IN MANAGEMENT INFORMATION SYSTEMS

The master's degree program consists of three phases:

- Prerequisite Phase.
- Core Knowledge Phase.
- Advanced Phase.

The Prerequisite Phase guarantees that all students have a common background. Successful completion of the Prerequisite Phase constitutes part of the admission requirements for the master's degree program.

The Core Knowledge and Advanced Phases constitute the degree program. The Core Knowledge Phase prepares students for their chosen concentration. In the Advanced Phase, students specialize in their concentration area. The concentration requirements are tailored to meet individual student's needs. The student must pass an examination to move from one phase to another.

ADMISSION REQUIREMENTS

All applicants who satisfy general graduate school admission requirements initially receive conditional admittance and may then pursue a degree program.

For full admission to a degree program, students must have the following:

- Bachelor's degree completed.
- Satisfactory completion of GMAT.
- Counseling session with a graduate counselor.
- A passing score on the Graduate Assessment Examination or a grade of B- or better in the corresponding Prerequisite Phase courses.

PREREQUISITE PHASE: MANAGEMENT INFORMATION SYSTEMS

The purpose of the Prerequisite Phase is to ensure a common background of knowledge in general business administration, software development, and quantitative methods. Successful completion of the Prerequisite Phase is required to move from the Prerequisite Phase to the Core Knowledge Phase and become fully admitted. To complete this phase, students either pass the DePaul courses listed below or pass the corresponding written examinations. A grade of B- or better is required in the software development courses and MAT 140. The exam is offered at the beginning of each month. Applications for the exam must be received at least one week before the exam. Exam dates, application forms, and a detailed study guide are available from the school (phone 312/362-8714). For more information on this exam, contact a graduate advisor. The MIS Prerequisite Phase covers the following topics:

INTERNAL ENVIRONMENT OF ORGANIZATIONS

ACC 500 Financial Accounting
GSB 499 Effective Analysis and Communication
MGT 500 Managing People I
MGT 502 Operations Management

EXTERNAL ENVIRONMENT OF ORGANIZATIONS

BLW 500 Legal and Ethical Environment
ECO 509 Business Conditions Analysis
ECO 500 Money and Banking
FIN 500 Financial Institutions and Markets
IB 500 Global Economy
SOFTWARE DEVELOPMENT
CSC 203 COBOL Programming
CSC 215 Introduction to Structured Programming Using C++ OR
CSC 225 C++ for Programmers
CSC 240 Personal Computing for Programmers

QUANTITATIVE METHODS
CSC 323 Data Analysis and Statistical Software I
MAT 145 Calculus for Information Systems

DEGREE REQUIREMENTS
The requirements for the Core Knowledge and Advanced Phases are presented below in
total. Students complete 13 graduate courses. At least six of these courses are chosen from the
Computer Science offerings and at least six of them from the Management Information Sys-
tems offerings. The remaining course is chosen from either of the two groups of courses.

CORE KNOWLEDGE PHASE COURSES: MANAGEMENT INFORMATION SYSTEMS
These consist of three Computer Science courses and three Management Information
Systems courses for a total of six courses. Most students complete the courses listed below.
However, waiver of some of these courses is possible for students with related course work or
experience but requires permission of their advisor. Students are still responsible for the
content of these courses on the Core Knowledge Examination. The course requirements are:

MANAGEMENT INFORMATION SYSTEMS
MIS 674 Systems Analysis and Design: Concepts, Tools and Techniques
MIS 676 Management Information Systems: Planning, Design and Implementation
MIS 677 Information Systems Project Management

COMPUTER SCIENCE
CSC 449 Database Technologies
SE 430 Object-Oriented Modeling
TDC 461 Basic Communication Systems

CORE KNOWLEDGE EXAMINATION: MANAGEMENT INFORMATION SYSTEMS
This examination covers the subject matter of the three computer science Core Knowl-
edge Phase courses listed above. Students take this examination as soon as they successfully
complete their Core Knowledge Phase courses. A B- or better is required for the MIS courses in
the Core Knowledge Phase. If a student receives a C+ or lower in one of these courses they
have two options: 1) Re-take the course and receive a B- or 2) Take the corresponding com-
prehensive exam and receive a passing grade.

Students who have related coursework or experience may earn a waiver of some of these
courses by passing the Core Knowledge Examination but require the permission of their advi-
sor to attempt this. Students earn a waiver only if they pass the associated Core Knowledge
Examination material in one attempt. Waived Management Information Systems courses are
replaced by Management Information Systems electives. Waived Computer Science courses
are replaced by Computer Science electives.

Students must pass this examination in two attempts or they will not be allowed to con-
tinue in the program.
Students who pass the Core Knowledge Examination with distinction and who maintain a 3.75 grade point average may graduate with distinction.

Note: Students must submit a written application three months before taking the Core Knowledge Examination.

ADVANCED PHASE COURSES: MANAGEMENT INFORMATION SYSTEMS

The Advanced Phase consists of seven graduate level courses. Students must fulfill the course requirements in both Management Information Systems and Computer Science. Three of these courses must be selected from the Advanced Phase Management Information Systems courses and three from the Advanced Phase Computer Science courses. The seventh course must be chosen from MIS 686 Introduction to Telecommunications Management or a Computer Science elective. Waiver of some of these courses is possible in individual cases but requires the approval of the student’s advisor.

MANAGEMENT INFORMATION SYSTEMS

Students must take at least two courses from Group A and one from Group B. Waiver of these requirements is possible in individual cases but requires the permission of the student’s advisor.

Group A:

- MIS 675 Advanced Systems Techniques
- MIS 678 Problems in Systems Design
- MIS 689 Decision Support Systems and Expert Systems

Group B:

- MIS 683 Information Processing Management
- MIS 684 Computers in Society
- MIS 685 Security, Accuracy and Privacy in Computer Systems

Students who have extra Management Information Systems electives due to waivers of required courses choose from the following courses or from courses in the above groups. With the permission of the MIS program director, they may also take other graduate courses offered by the College of Commerce.

ACCOUNTING

- ACC 535 Accounting Systems
- ACC 526 Microcomputer Uses in Decision-Making
- ACC 527 Design and Construction of Decision Models
- ACC 588 Management Consulting
- MGT 510 Quality Control
- MGT 580 Operations Research
- MGT 590 Management of Innovation and Technological Change
- MIS 679 Graduate Seminar in Information Systems
- MIS 798 Special Topics
- MKT 585 Marketing Information Systems for Decision Support

COMPUTER SCIENCE

Students must take three Advanced Phase Computer Science courses chosen from the following two groups. Waiver of these requirements is possible in individual cases but requires the permission of the student’s advisor.

One of the following:

- CSC 423 Data Analysis and Regression
- SE 467 Software Reliability
- SE 468 Software Measurement and Project Estimation
- TDC 432 Computer and Information Systems Modeling
Two of the following:

- **CSC 556** Foundations of Artificial Intelligence
- **IS 572** Computer Security
- **IS 574** Decision Support Systems and Expert Systems
- **SE 558** Software Methodologies
- **TDC 462** Data Communications

Students who choose their elective course from the Computer Science courses or who have extra Management Information Systems electives due to waivers of required courses choose from the following courses or from courses in the above two groups. With the permission of Dr. Martin Kalin, program administrator for CSC, they may also take other graduate courses offered by the School of Computer Science, Telecommunications and Information Systems.

- **ECO 512** Applied Time Series and Forecasting
- **CSC 549** Advanced Database Technologies
- **TDC 489** Queuing Theory with Computer Applications
- **TDC 565** Voice and Digital Systems
DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

ADMISSION REQUIREMENTS
In order to be considered for admission to the doctoral program, students minimally must:

- Hold a master's degree in Computer Science or an allied field.
 Students are eligible for early admission to the Ph.D. program through the Distinguished Scholars Program within the M.S. degree in Computer Science or through the Software Management Program within the M.S. degree in Software Engineering.
- Submit three letters of recommendation.
- Show definite promise for completing the program.
- Submit a written statement describing their accomplishments, goals and interests.
- Submit a completed application form.
- Submit official score report of the Graduate Record Examination (GRE).
 In addition, applicants educated outside of the United States must demonstrate English proficiency with a TOEFL score of 580 or greater.

COMPLETENESS OF CREDENTIALS
When important pieces of information, such as transcripts, are lacking, the school is compelled by University regulations to reject the application.

The Ph.D. Committee determines which applicants will be admitted to the program. Meeting the minimum admission standards does not guarantee acceptance, since the number of applicants who can be admitted is limited.

DEGREE REQUIREMENTS
The following steps are needed to complete the requirements for the degree. The student must:

- Complete advanced coursework.
- Be admitted to candidacy.
- Complete the dissertation.
 - These steps are described in detail below.

COURSE REQUIREMENTS

- Ph.D. students are required to complete at least 60 credits (15 courses) of graduate classes beyond the master's degree. These credits must include at least 48 credits of courses in the 411—599 range, including CSC 426 Values and Computer Technology, and 12 credits of CSC 699 Research.
- Students may enroll in CSC 699 only after admission to candidacy.
- The written approval of the Ph.D. Committee is required, before registering, to apply courses taught outside the School towards the doctoral program course requirements.
- Students must maintain a grade point average of 3.0 or better to remain in good standing in the program. A course grade below 2.0 is unsatisfactory and will not be counted toward degree requirements. The Ph.D. Committee will ask students to withdraw from the doctoral program if the members judge that those students are not progressing satisfactorily toward the degree.
ADMISSION TO CANDIDACY

To be admitted to candidacy, doctoral students must complete the following:

Residency. Three quarters of full-time study at DePaul University beyond the master’s level. Full-time study is defined as registration for a minimum of eight credit hours (two courses) per quarter. With prior approval of the Ph.D. Committee, students may satisfy residency requirements by coursework, participation in seminars, or by research performed off campus.

Allied Course. Complete the course CSC 426 Values and Computer Technology.

Doctoral Candidacy Examinations: Pass three Candidacy Area Examinations.

DOCTORAL CANDIDACY EXAMINATIONS

Doctoral candidacy examinations are offered twice each year, in March and August. Applications to take these exams must typically be completed three months prior to the exam date. A student is allowed at most two attempts at passing a candidacy examination in any area. Any student who fails more than three candidacy examination attempts will be asked to leave the program. Reading lists and previous exams are available in the School office.

Recommended courses for examination preparation are as follows:

ARTIFICIAL INTELLIGENCE
CSC 456 Foundations of Intelligent Databases
CSC 457 Expert Systems
CSC 458 Symbolic Programming
CSC 502 Genetic Algorithms
CSC 556 Foundations of Artificial Intelligence
CSC 578 Neural Networks I
CSC 579 Neural Networks II
CSC 580 Artificial Intelligence Programming
CSC 582 Machine Learning
CSC 583 Natural Language Processing
CSC 585 Knowledge Representation
CSC 587 Cognitive Science
CSC 594 Topics in Artificial Intelligence

COMMUNICATIONS
TDC 432 Computer and Information Systems Modeling
TDC 462 Data Communications
TDC 463 Computer Networks and Data Systems
TDC 489 Queuing Theory with Computer Applications
TDC 513 Client/Server Technologies
TDC 561 Distributed Processing
TDC 562 Computer Communication Network Design and Analysis
TDC 563 Protocols and Techniques for Data Networks
TDC 564 Local Area Networks
TDC 566 Integrated Services Digital Networks
TDC 568 Network Management
TDC 593 Topics in Telecommunications
TDC 597 Topics in Data Communications
THEORETICAL COMPUTER SCIENCE
CSC 490 Theory of Computation
CSC 493 Automata Theory and Formal Grammars
CSC 497 Information Theory
CSC 503 Parallel Algorithms
CSC 591 Topics in Algorithms
CSC 599 Topics in Computer Science

COMPUTER INFORMATION SYSTEMS
IS 554 Information Engineering
IS 574 Decision Support Systems and Expert Systems
IS 577 Management of Information Technology
IS 596 Topics in Information Systems
SE 477 Software and Systems Project Management
SE 553 Advanced Topics for Systems Development
SE 558 Software Methodologies

DATA ANALYSIS
CSC 423 Data Analysis and Regression
CSC 424 Advanced Data Analysis
CSC 428 Data Analysis for Experimenters
CSC 598 Topics in Data Analysis

DATABASE SYSTEMS
CSC 451 Database Design
CSC 452 Database Programming
CSC 456 Foundations of Intelligent Databases
CSC 457 Expert Systems
CSC 481 Pattern Recognition and Machine Perception
CSC 549 Advanced Database Systems
CSC 550 Object-Oriented Databases
CSC 589 Topics in Database

OPERATING SYSTEMS
CSC 460 Topics in Operating Systems
CSC 489 Queueing Theory with Computer Applications
CSC 504 Parallel Processing
CSC 546 Operating System Design
IS 572 Computer Security

VISUAL COMPUTING
One of the following two course sequences:
HCI 401 User Interface Design
HCI 506 User Interface Evaluation
CSC 469 Computer Graphics I
CSC 539 Computer Graphics II
CSC 481 Pattern Recognition and Image Processing
CSC 584 Computer Vision
One of the following not previously applied above:

HCI 401 User Interface Design
CSC 438 Vision Systems
CSC 469 Computer Graphics I
CSC 481 Pattern Recognition and Image Processing
CSC 498 Digital Signal Processing
CSC 536 Modeling for Computer Aided Design
HCI 506 User Interface-Evaluation
CSC 539 Computer Graphics II
CSC 584 Computer Vision

PROGRAMMING LANGUAGES AND ENVIRONMENTS

CSC 434 Object-Oriented Programming
CSC 504 Parallel Processing
CSC 535 Formal Semantics of Programming Languages
CSC 548 Advanced Compiler Design
CSC 599 Topics in Computer Science
HCI 401 User Interface Design

SOFTWARE ENGINEERING

IS 571 Software Maintenance
SE 430 Object-Oriented Modeling
SE 431 Formal Software Specifications and Development I
SE 465 Software Engineering Principles
SE 467 Software Reliability
SE 531 Formal Software Specifications and Development II
SE 533 Software Verification and Validation
SE 558 Software Methodologies
SE 690 Research Seminar

SOFTWARE MANAGEMENT

CSC 428 Data Analysis for Experimenters
CSC 433 Software Testing
IS 427 Software Quality Management
IS 483 Information Systems Management
IS 577 Management of Information Technology
SE 468 Software Measurement and Project Estimation
SE 477 Software and System Project Management
SE 529 Software Risk Management

CANDIDACY CONTINUATION

Once admitted to candidacy, the doctoral candidate must maintain registration in the University in each of the quarters of the academic year until the degree requirements have been completed. After the student has completed the 60 required credits, this requirement may be satisfied by registering for CSC 701 Resident Candidacy Continuation. Failure to comply with this policy may result in dismissal from the doctoral program. Students dismissed from the program for this reason need to follow the readmission procedures to be considered for reinstatement in the program.
CHOOSING A DISSERTATION AREA

It may require additional class and private study time after passing the Candidacy Area Examinations for the student to determine the research area which will be the basis for their dissertation. This choice should be made carefully since the student will be completing extensive in-depth study in this area.

FINDING A DISSERTATION ADVISOR

Once a research area has been determined, the student must find a member of the School faculty who is willing to serve in the capacity of Dissertation Advisor. This faculty member must be willing to commit time and effort to guide the student in further research and assist them in writing academic papers and the Ph.D. dissertation. While not customary, it is possible to switch dissertation advisors, and both the student and the faculty member are free to terminate this relationship at any time.

BACKGROUND STUDY AND RESEARCH

The Ph.D. student must be thoroughly acquainted with the current scholarly research being done in a particular area before choosing a dissertation topic in that area. This requires that the student read current papers from academic journals and conferences to become knowledgeable about current research in the particular area which has been chosen. The Dissertation Advisor should be able to help the student in choosing appropriate reading material. In addition, students will often do small projects in their chosen area during this time to become familiar with appropriate research methods. Typically it may require a year or more of such work to begin to understand the problem domain.

CHOOSING A DISSERTATION COMMITTEE

The student and Dissertation Advisor work together to develop the Dissertation Committee. Three of the members must be full-time faculty members in the School of Computer Science, Telecommunications and Information Systems. The fourth committee member must be a faculty member from outside the division of the research, or a scholar from outside the university whose expertise is pertinent to the topic of the dissertation. The members must be approved by the Ph.D. committee.

ORAL QUALIFYING EXAMINATION

The Oral Qualifying Examination is taken after a student has selected a general topic for the dissertation and done extensive study in that area. This examination will test the student’s depth of knowledge in the chosen area. The committee may ask the student any questions about the chosen research area. The student will pass this examination only if the Dissertation Committee agrees that the student has gained sufficient knowledge to proceed to the Dissertation Proposal. The committee may recommend that the student repeat this examination at a later date or leave the program if they are not satisfied with the current work. This exam must be passed within two years of being admitted to Candidacy.

CHOOSING A DISSERTATION TOPIC

The Ph.D. student, in conjunction with the Dissertation Advisor, must determine an idea for research and study which is likely to provide results which are original and significant. The Ph.D. dissertation must show work which goes beyond what has been done in any other published work and which is important to the field. After choosing a Dissertation Topic, the student will do further work on the chosen topic to attempt to gain some preliminary research results. Typically 6 months to 1 year of work must be done after the dissertation topic has been chosen before the Dissertation Proposal should be attempted.
PRESENTATION OF THE DISSERTATION PROPOSAL

Once the student has enough preliminary results that the student and the Dissertation Advisor are confident that the work should result in publishable results, the student will write an extensive review of previous work in the area and a research proposal for the dissertation research. The Dissertation Committee members will then choose a date for the presentation of the proposal. The student will provide an oral presentation of current results and future research goals to the Dissertation Committee.

The proposal will be approved only if the Dissertation Committee agrees that the work which is planned will constitute an acceptable Ph.D. dissertation. The committee may recommend that the student repeat the proposal at a later date or leave the program if they are not satisfied with the current work.

PUBLISHING A JOURNAL OR CONFERENCE PAPER

Except in very unusual situations it will be required that every Ph.D. student in Computer Science publish at least one paper in a refereed journal or conference proceedings before completing their degree. This requires choosing a set of results which will be of interest to the research community, writing these results into a concise academic paper and submitting this paper to a conference or journal. Conference papers must typically be submitted 6 months to 1 year before the conference will be held so they may be reviewed by peer researchers at other universities.

WRITING THE PH.D. DISSERTATION

Ph.D. dissertations in Computer Science are typically 100 to 300 pages in length and must represent a significant and original body of work.

PUBLIC DISSERTATION DEFENSE

After the dissertation has been written, the Ph.D. student will provide a copy to all members of the Dissertation Committee and present the results at a School seminar. The Dissertation Committee must recommend that the defense should proceed prior to scheduling a date for the defense. The members of the Dissertation Committee will determine whether the completed dissertation actually embodies the work which was promised in the Dissertation Proposal. The committee may recommend modifications or additional research which must be completed before the degree will be granted. Refer to the section on program time limitations below.

PUBLISHING THE DISSERTATION

A bound copy of the dissertation and the abstract must be presented to the DePaul Library where it will be permanently available to current and future DePaul students. Consult the Handbook for Graduate Studies at the back of this bulletin for information on submitting the dissertation and an abstract of it to the School. Contact the Student Services office for additional information regarding procedures to follow for binding the dissertation.

GRADUATION

Candidates for graduation must fill out an application at least three months before the date the degree is expected. Doctoral candidates who have passed the dissertation defense and who have submitted their dissertations to the School become eligible for degree conferal. Consult the Handbook for Graduate Studies at the back of this bulletin for procedures and fees related to graduation.
PROGRAM TIME LIMITATIONS

- There is a time limit of four years between admission to the doctoral program and admission to candidacy.
- There is a time limit of two years between admission to candidacy and passing the oral qualifying examination.
- There is a time limit of not less than eight months and not more than five years between admission to candidacy and the dissertation defense.
- Consult the Handbook for Graduate Studies at the back of this bulletin for graduation application deadlines and the deadline for submitting completed dissertations.
COURSES
All courses carry four hours of credit unless otherwise indicated.

UNDERGRADUATE COURSES
These courses count only for Prerequisite Phase requirements.

CSC 203 COBOL Programming. An introduction to programming in the business oriented language COBOL. The emphasis will be on business problems involving the processing of large quantities of data.

CSC 213 On-Line Processing in COBOL. Conversational and pseudoconversational programming in COBOL, including subprogramming. Relative and indexed file organizations supporting on-line access. Concepts of interactive screen design, and programming with use of Customer Information Control Systems (CICS) on IBM mainframes. Prerequisite: CSC 203.

CSC 215 Introduction to Structured Programming Using C. An introduction to structured computer programming using ANSI C. Topics include: simple data types, control structures, character string processing, array processing, functions and structures. (Recommended: Students should have completed or be concurrently enrolled in MAT 140.)

CSC 225 C++ for Programmers. Introduction to C++ for persons with previous programming experience in some high-level language other than C or C++. Basic input/output (e.g., cin, cout), variables, operators, control flow, functions, program structure, arrays, pointers, storage classes, type qualifiers, classes, constructors, destructors, introduction to templates, dynamic storage allocation (new, delete). Prerequisite: Experience in at least one high level programming language.

CSC 240 Personal Computing for Programmers. Introduction to relational database concepts using PC databases; data access methods; structured query language (SQL); query by example; networks and the use of networks to share data; spreadsheets and macro languages. Prerequisite: 110 or 150.

CSC 310 Principles of Computer Science I. Conceptual models of a computer, machine and assembly language. Internal data representation, programming methods, recursion, stacks, queues. Prerequisite: CSC 215.

CSC 315 Analysis and Design Techniques. Analyzing a problem requiring a computer-based solution, designing a solution, prototyping the solution in a 4th generation language, testing the prototype. Structured analysis and design techniques, data flow and control flow programming, the data/project dictionary, processing narratives, architectural design, detailed design, transform and transaction flow, program design language, technical reviews, inspections and walkthroughs. Comparison of structured techniques to alternative approaches. A team project will be required to motivate these topics. Prerequisite: CSC 310.

CSC 323 Data Analysis and Statistical Software I. Programming in the statistical language SAS. Introduction to data analysis, elementary statistical inference. Regression and correlation. Prerequisites: CSC 310 or CSC 415, and MAT 140.

CSC 342 File Processing and Data Management. File processing environment and file manipulation techniques using C. Algorithms and techniques for implementing stream files, sequential files, direct files, indexed sequential files. Inverted lists, multilists and database structures will be discussed. Implementation of data management systems. Prerequisite: CSC 415.
CSC 343 Introduction to Operating Systems. A brief history of operating systems development; the four basic components—file systems, processor scheduling, memory management, and device scheduling; deadlock; concurrency; protection; distributed systems. Prerequisite: CSC 415.

CSC 345 Computer Architecture. Introduction to digital logic; microprogramming; further topics. Prerequisite: CSC 415.

CSC 373 Information Systems. Development of information system applications at the strategic, tactical and operational levels. Systems theory and concepts, quality decision-making, the organizational role of information technology, and roles of people using, developing and managing systems. Prerequisite: 240.

CSC 415 Foundations of Computer Science I. Iteration, induction, and recursion; asymptotic analysis; analysis of algorithms; abstract data types; trees, binary trees, binary search trees, priority queues, heapsort; linked lists; stacks; queues. Prerequisites: MAT 140 and CSC 225.

CSC 416 Foundations of Computer Science II. Sets, hashing, relations, and functions; relational data model; graphs. Prerequisites: CSC 311 or 415.

CSC 417 Foundations of Computer Science III. Advanced C++ features: inheritance, polymorphism and virtual methods, operator overloading, templates; context-free grammars and languages; parsing, propositional logic; digital logic. Prerequisites: CSC 225 or solid knowledge of C.

MAT 140 Discrete Mathematics I. Boolean Algebra, graph theory, and combinatorial analysis with computer applications. Prerequisite: 131 or three years of high school mathematics.

MAT 145 Calculus for Information Systems. Limits, continuity, the derivative and rules of differentiation, applications of the derivative, exponential and logarithm functions, the definite integral and some methods of integration, improper integrals. Prerequisite: MAT 141.

MAT 150 Calculus I. Limits and derivatives, extrema, curve sketching, convexity, inverse functions, continuity. Prerequisite: MAT 131 or three years of high school mathematics.

MAT 151 Calculus II. Definite and indefinite integral; volume; arc length; trigonometric functions; logarithmic and exponential functions. Prerequisite: MAT 150.

MAT 220 Linear Algebra with Applications. (For non-mathematics majors.) Systems of linear equations, matrices and matrix algebra, determinants, applications to linear programming, graph theory, etc. Prerequisite: MAT 151.

PHY 405 Physical Principles of Telecommunications. The course intended for non-majors treats the basic concepts of physics on which communications are based, such as basic electricity, circuit elements, transmission lines, and fibers. Included will be a discussion of combinational and sequential digital circuits. The format consists of lecture and laboratory exercises. Prerequisite: Mathematics 151 or equivalent.
GRADUATE COURSES

COMPUTER SCIENCE COURSE OFFERINGS

Completion of the Prerequisite Phase is required for all courses not listing specific prerequisites.

CSC 423 Data Analysis and Regression. Multiple regression and correlation, residual analysis, analysis of variance, and robustness. These topics will be studied from a data analytic perspective, supported by an investigation of available statistical software. Prerequisite: CSC 323 or consent.

CSC 424 Advanced Data Analysis. Topics chosen from among multivariate statistical methods, discriminant analysis, principal components analysis, factor analysis, discrete multivariate analysis, and non-parametric statistics. Prerequisite: CSC 423 or consent.

CSC 426 Values and Computer Technology. The impact of computerized technologies on society with particular attention paid to the ethical issues raised by these social effects. The course will require of all Ph.D. students research leading to a paper of publishable quality. Techniques for this type of research and writing will be discussed. An oral presentation of the research of that paper will also be required.

CSC 428 Data Analysis for Experimenters. The analysis of experiments in the computing science with special emphasis on the use of statistical software and interpretation of generated output. Prerequisite: CSC 423.

CSC 434 Object-Oriented Programming. An introduction to object-oriented concepts and programming. Object-oriented applications, object-oriented database systems, architectural issues in object-oriented systems, and areas of research in object-oriented systems will be examined.

CSC 435 Multimedia. Multimedia interface design. Underlying technological issues including synchronization and coordination of multiple media, file formats for images, animations, sound and text. Hypertext. Information organization. Survey of multimedia authoring software. Long distance multimedia (World Wide Web). Students will critique existing applications and create several multimedia applications. Prerequisite: CSC 311 or CSC 415.

CSC 436 Foundations of Visual Computing. Mathematical and physical notions that underpin computer vision graphics. Topics will include approximation, interpolation, linear shift invariant systems, transforms for signal and analysis, radiant sources, photometry.

CSC 445 Computer Architecture. Design and evaluation of modern digital computers. Virtual machines, sequential circuits, instruction formats and addressing modes, basic ALU operations, control design and microprogramming, high-speed memory technology, bus architecture. Prerequisite: CSC 345 or PHY 405.

CSC 446 Computer Operating Systems. A survey course examining in depth a number of modern operating systems. Topics will include synchronization and resource management of multiple processor and distributed systems. Prerequisite: CSC 343 or equivalent.

CSC 448 Compiler Design. Design and structure of high level languages. Lexical scan, top down and bottom up syntactic analysis. Syntax directed translation and LR(k) grammars. Prerequisite: CSC 447 or consent.

CSC 449 Database Technologies. An introduction to database technology and systems including: database architecture, data models, query languages, integrity, security, functional dependency and normalization. Prerequisite: CSC 311 or 415.

CSC 451 Database Design. Design methodologies. Requirement formulation and analysis, conceptual design, implementation design, physical design. Emphasis will be on data modeling techniques. Class team projects incorporate the design of a complete database structure and implementations of design tools. Prerequisites: CSC 449, a programming language.

CSC 452 Database Programming. Programming in large-scale relational database environment using host languages such as C. Design and implementation of online applications and report generations. Micro-computer Database System programming. Concepts such as database integrity, transactions, transaction recovery, concurrency and record locking will be covered. Prerequisites: CSC 449, 215.

CSC 456 Foundations of Intelligent Databases. An introduction to the use of logic and deduction in databases and artificial intelligence. Topics will include propositional logic, first order predicate calculus, resolution theorem proving, deductive retrieval and deductive databases, inference engines, logic programming, and truth maintenance systems.

CSC 457 Expert Systems. A detailed study of the development of artificial intelligence-based expert systems applications. Students will use commercial expert systems packages to develop example applications programs. Topics will include frames and other knowledge-representation techniques, rule-based and case-based systems, inference, and model-based reasoning.

CSC 458 Symbolic Programming. Basic concepts of symbolic programming as embodied in the language LISP. Techniques for prototyping and building conceptually advanced systems in an environment that encourages procedural and data abstraction. Topics include basic programming techniques, symbolic expressions, recursion, advanced data and control structures, object-oriented programming in CLOS, and symbolic control of TCP/IP connections, MIDI sequencing, text-to-speech, and speech recognition. Assignments will focus on basic AI techniques, but the class is intended for anyone who will need to rapidly develop large complex systems.

CSC 470 *Survey of Computer Graphics.* Overview of selected 2D techniques including compositing, and morphing, and a survey of basic 3D techniques, including interaction of light and color. Multimedia, Virtual Reality. Students write parts of a raytracer, and create an animation. **Prerequisite: CSC 415.**

CSC 481 *Pattern Recognition and Image Processing.* Image processing, edge detection, segmentation, feature extraction, decision boundaries, Bayesian classifiers, nearest neighbor classifiers, clustering, neural nets. **Prerequisite: one statistics course.**

CSC 485 *Numerical Analysis.* Use of a digital computer for numerical computation. Error analysis, Gaussian elimination and Gauss-Seidel method, solution of nonlinear equations, function evaluation, approximation of integrals and derivatives, Monte Carlo methods. **Prerequisites: MAT 220 and a programming course.**

CSC 487 *Operations Research I.* Linear Programming. The Linear Programming problem and its dual; the simplex method; transportation and warehouse problems; computer algorithms and applications to various fields. **Prerequisites: MAT 220 and any introductory programming course.**

CSC 488 *Operations Research II.* Optimization Theory. Integer programming; nonlinear programming; dynamic programming; game theory. **Prerequisite: CSC 487.**

CSC 490 *Theory of Computation.* An introduction to the mathematical foundations of computation. Random access and Turing machines, recursive functions, algorithms, computability and computational complexity, intractable problems, NP-complete problems. **Prerequisite: CSC 493.**

CSC 491 *Design and Analysis of Algorithms.* Methods of designing algorithms including divide-and-conquer, the greedy method, dynamic programming, and backtracking. Emphasis on efficiency issues.

CSC 493 *Automata Theory and Formal Grammars.* An introduction to the most important abstract models of computation and their applications: finite state machines and pushdown automata. The relationship between formal grammars and automata.

CSC 496 *Microprocessors.* An introduction to the hardware and software aspects of microprocessors. Digital electronics, microprocessors, programming, interfacing. Laboratory work will involve hands-on work with microprocessor systems. Prerequisite: one assembler course.

CSC 497 *Information Theory.* An introduction to the basic concepts of information theory and coding theory. Measure of information, the fundamental theorem, Hamming, BCH, and other cyclic codes.

CSC 498 *Digital Signal Processing.* Elements of circuit and signal theory, theory of modulation, mathematical basis of sampling and coding, principles of digital filtering. Applications to communications, process control, image and voice recognition, voice synthesis.
CSC 502 Genetic Algorithms. The basics of genetic algorithms, the schema theory of John Holland, advanced operators and genetic search, as well as applications, e.g. genetic-based machine learning, parsing, expert system, etc. Students will work on a variety of projects based on the applications discussed in class. Prerequisite: CSC 491.

CSC 503 Parallel Algorithms. Development, implementation, and applications of parallel algorithms. Models of parallel computation. Parallel sorting, searching and graph algorithms, as well as other parallel algorithms, will be studied and implemented on both simulated and actual parallel machines. Prerequisite: CSC 491.

CSC 504 Parallel Processing. Specific multiprocessor architectures and how to implement various algorithms on each machine. Students will implement a fairly large project on a multiprocessor. The course will also introduce some compilation techniques, for a better understanding of the issues. Prerequisite: CSC 491.

CSC 537 User Interface Evaluation. Techniques of heuristic evaluation, usability testing and formal experimentation. Students take a prototype interface from a first implementation through evaluation. Prerequisite: CSC 437, 323 or a basic statistics course.

CSC 538 Vision Systems. A survey of working vision systems such as bar code readers, handwriting readers, robotic navigation systems, target acquisition and tracking systems. Prerequisite: CSC 481 or CSC 584.

CSC 545 Advanced Computer Organization. Parallel, array and pipeline processors and other topics of current interest. Prerequisite: CSC 445.

CSC 546 Operating Systems Design. A project/seminar oriented course examining the details of the design of operating systems. The ideas from CSC 446 will be extended and incorporated into the design details. Prerequisite: CSC 446.

CSC 548 Advanced Compiler Design. Emphasis on practical problems in implementing compilers, data flow analysis, code optimization, error analysis. Discussion of compiler generators. As a class project, students will write a compiler. Prerequisite: CSC 448.

CSC 549 Advanced Database Systems. Physical data organization and database indexes. Query processing and optimization. Failure and recovery in database systems. Concurrency control and transaction management. Selected topics: intelligent databases, temporal databases, multimedia databases, spatial databases, fuzzy databases, etc.

CSC 551 Distributed Database Systems. Distributed database architecture, distributed database design, distributed query processing, query decomposition and optimization of distributed queries, distributed transaction management and concurrency control, distributed DBMS reliability, distributed database operating systems. Distributed multidatabase systems. Client/Server database systems. **Prerequisite:** CSC 449 and TDC 462.

CSC 556 Foundations of Artificial Intelligence. A survey of the fundamental techniques used in artificial intelligence: Heuristic search, game playing, means-ends analysis and classical planning, constraint propagation, natural language understanding, and systems that learn. An introduction to intelligent interfaces, intelligent agents, and modeling human cognition with AI systems. **Prerequisite:** CSC 456, CSC 457 or CSC 458 or consent.

CSC 570 Visualization. Reconstruction techniques. Voxel classification and isosurface generation. Spatial set operations. Projections of higher-dimensional data sets. Data feature enhancement. False color mapping. Survey of applications in science, engineering and medicine. **Prerequisites:** CSC 469 and CSC 436.

CSC 578 Neural Networks I. A study of the basic structure of neural networks, activation and weights computation, learning, and various models: competition, pattern association, supervised and unsupervised learning units, single and multi layer models, Hopfield nets, Boltzman machines, and others. Some current applications are explored.

CSC 579 Neural Networks II. Advanced neural network architectures: Kohonen Networks, Counter Propagation Networks, Bi-directional Associative Memories as well as Art1 and Art2 Networks. Professional Neural Network development tools will be used throughout the course. There will be a project. **Prerequisite:** CSC 578.

CSC 580 Artificial Intelligence Programming. System implementation, using the powerful procedures and structures of modern AI such as: slot and filler databases, unification pattern matching, heuristic search, deductive information retrieval, procedures as data, case-based reasoning, natural language understanding, logic programming, discrete networks, and constraint satisfaction. **Prerequisite:** CSC 458.

CSC 583 Natural Language Processing. Introduction to computer understanding of natural (human) languages. Topics include knowledge representation, syntactic analysis and grammars, parsing, semantic interpretation, discourse analysis, text generation, and machine translation. An overview of several existing natural language processing systems. **Prerequisite:** 417 or consent of instructor.
CSC 584 Computer Vision. An introduction to computer vision, including image representation, segmentation, stereo, color, texture perception, motion, knowledge representation, and neural nets. Recommended: CSC 436 or CSC 481.

CSC 585 Knowledge Representation. Techniques for symbolic representation of knowledge in artificial intelligence and knowledge-based systems. Topics will include propositional logic, predicate calculus, nonmonotonic logics, semantic networks and frames, conceptual dependencies and scripts, truth maintenance systems, and qualitative reasoning. Prerequisite: CSC 456.

CSC 587 Cognitive Science. Introduction to the principles and methods of cognitive psychology, and the relation between psychology and artificial intelligence; in particular, the use of AI systems to model human cognition. An overview of AI systems that have been intended as cognitive models, such as ACT* and SOAR. Emphasis on information processing. Applications to human/computer interaction.

CSC 589 Topics in Database. Prerequisite: consent of the instructor. Independent study form required.

CSC 590 Topics in User Interfaces. Prerequisite: completion of the corresponding visual computing core sequence or consent of instructor. May be repeated for credit.

CSC 591 Topics in Algorithms. An in-depth discussion of one or more of the following topics: algorithms for integer operations, polynomial arithmetic including applications of the fast Fourier transform, matrix operations, pattern matching algorithms, proving lower bounds on the complexity of algorithms, parallel algorithms, approximation algorithms. Prerequisite: CSC 491.

CSC 592 Topics in Computer Vision and Pattern Recognition. Prerequisite: completion of the corresponding visual computing core sequence or consent of instructor. May be repeated for credit.

CSC 594 Topics in Artificial Intelligence. Prerequisite: consent of instructor. Independent Study form required.

CSC 595 Topics in Graphics. Prerequisite: completion of the corresponding visual computing core sequence or consent of instructor. May be repeated for credit.

CSC 598 Topics in Data Analysis. Prerequisite: consent of instructor. Independent Study form required.

CSC 599 Topics in Computer Science. Prerequisite: consent of instructor. Independent Study form required.

CSC 610 Computer Science 1. An introduction to structured programming using PASCAL. Topics include: elementary data types, program control structures, character strings, array processing, procedures and functions, and an introduction to user-defined data types.

CSC 611 Computer Science 2. Conceptual models of a computer, machine and assembly language. Internal data representation, programming methods, recursion. Basic data structures, stacks, queues, linked lists. Trees, tree searches and string processing. Prerequisite: CSC 610.

CSC 640 Teaching Computer Science. A study of different programming languages used in high schools: PASCAL, BASIC, LOGO etc. A survey of computer topics covered in high school courses. Motivation and objectives in computer education. Prerequisite: CSC 611.

CSC 670 Computer-Assisted Instruction. Study and analysis of the use of the computer as an aid in instruction. Use of CAI languages such as PILOT. Prerequisite: CSC 630.

CSC 671 Quantitative Computing Workshop. Quantitative computing background needed for graduate study complemented with application to useful problems using appropriate software tools.

CSC 672 Data Analysis Workshop. Statistical background needed for graduate study complemented with experience in data analysis using SAS. Prerequisite: CSC 671 or equivalent.

CSC 680 Programming with LOGO. An introduction to LOGO, a powerful yet easy-to-learn language that both adults and children can use to express ideas.

CSC 690 Research Seminar. Readings and discussion on current research topics. Students may register for this course no more than twice. Prerequisite: consent of the instructor.

CSC 696 Master's Project. Four credit hours. Students may register for this course only after their advisor has approved a written proposal for their project. Prerequisite: consent of advisor. Independent study form required.

CSC 698 Master's Thesis. Two credit hours. Students may register for this course only after their advisor has approved a written proposal for their thesis. Students must continue to register for this course every quarter after their first registration in it until they complete their project or thesis to the satisfaction of their advisor. They earn two hours of credit for each such registration but only four hours of credit will apply for degree credit. Prerequisite: consent of advisor. Independent study form required.

CSC 699 Research. Prerequisite: One to 12 hours per quarter. A total of 12 hours is required. Prerequisite: Pass Candidacy Examination in three concentration areas.

CSC 701 Resident Candidacy Continuation. Non-credit. Students admitted to candidacy for the doctoral degree who have completed all course and dissertation registration requirements and who are regularly using the facilities of the University for study and research are required to be registered each quarter of the academic year until the dissertation and final examination have been completed. Prerequisite: Admission to Candidacy Independent Study form required.

CSC 702 Non-Resident Candidacy Continuation. Non-credit. This registration provides for doctoral candidates who have been admitted to candidacy who are not in residence and need only occasional use of University facilities, including the libraries. Prerequisite: Admission to Candidacy Independent Study form required.

HUMAN-COMPUTER INTERACTION COURSE OFFERINGS
Completion of the prerequisite competencies is required for all courses not listing specific prerequisites.

HCI 400 Analysis and Design for HCI. Introduction to the relation between psychology and human-computer interaction. Understanding users and tasks in the context of the work environment. Prerequisite: Completion of 4 prerequisite competencies.
COURSE DESCRIPTIONS

HCI 410 Introduction to Human-Computer Interaction. The user-interface development process. The user/task/work environment analysis. Low-fidelity prototyping techniques. User interface design principles. User interface styles including menus, command languages, form fill-in, direct manipulation and natural language. Prerequisites: HCI 400, ART 461, PSY 680.

HCI 422 Multimedia. Multimedia interface design. Underlying technological issues including synchronization and coordination of multiple media, file formats for images, animations, sound and text. Hypertext. Information organization. Survey of multimedia authoring software. Long distance multimedia (World Wide Web). Students will critique existing applications and create several multimedia applications. Prerequisite: HCI 410 or permission of the instructor.

HCI 430 Prototyping for Human-Computer Interaction I. Introduction to creating prototypes for HCI systems. Discusses modern user interface programming tools (VB, Access, etc). The emphasis is on creating testable prototypes and evaluating these prototypes. Converting the prototype to a final working system is discussed. Students create a prototype for a predefined system, evaluate the prototype, redesign the system as necessary, and convert it to a final working system. Students prepare written documents describing their activities and present the final results to the class. Prerequisite: HCI 410 or permission of the instructor.

HCI 460 Evaluating Human-Computer Interaction. Techniques of heuristic evaluation, usability testing and formal experimentation. Students take a prototype interface from a first implementation through evaluation. Prerequisite: a statistics course.

HCI 511 Designing for Disabilities. Designing computer-based solutions for problems faced by people with disabilities. Designing for both physical and cognitive disabilities. Solutions include text enlargement, enhanced audio, custom presentation of information, and unique input devices. Prerequisites: HCI 410 and HCI 460.

HCI 512 Designing for Visualization. Sources of graphical integrity and sophistication. Data-Ink maximization. Data density. Color and information. Effective use of space and time. Prerequisites: HCI 410 and HCI 460.

HCI 540 User Interface Implementation I. Converting prototypes into running systems. The focus is on using a User Interface Management System, learning the underlying programming language, and the underlying programming environment. Students work on a project that requires pushing the UIMS beyond its normal limits. TAE+, Galaxy, DevGuide, C, C++, Tcl/tk. Students present their final results to the class. Prerequisite: CSC 417 or equivalent.
Topics in Human-Computer Interaction. Prerequisite: completion of the HCI core courses or consent of the instructor. May be repeated for credit.

Human-Computer Interaction Capstone. HCI 594 provides an opportunity for students to apply all of the skills they have learned on one comprehensive project. Multidisciplinary teams design, evaluate, and implement a user interface intensive project. Students prepare written documents describing their activities and present the final results to the class. Prerequisite: completion of the HCI core courses or consent of the instructor.

INFORMATION SYSTEMS COURSE OFFERINGS

Completion of the Prerequisite Phase is required for all courses not listing specific prerequisites.

IS 427 Software Quality Management. Quality management principles, tools, and methods applied to the software development process. Selected techniques for continuous and incremental improvements in product and process such as defect analysis, control charts, risk assessment, quality control, quality improvement programs, quality function deployment, the capability maturity model, cleanroom engineering, and benchmarking. Prerequisite: CSC 323.

IS 475 Information Systems Analysis and Design. Information systems development emphasizing the application of structured techniques in a CASE and 4GL environment. Topics and team project tasks include CASE tools, entity-relationship diagramming, data-flow diagramming, structure chart, action diagram, joint application design, prototyping, design of relational database; and testing. Prerequisite: CSC 315.

IS 482 Legal Aspects of Data Processing. A practical survey of computer and data processing law arising in a high-tech environment. Areas covered include: contracts, copyrights, patents, trade secrets, trademarks, crime, unfair competition and international treaties.

IS 553 Advanced Topics for Systems Development. Rapid application development approach to information systems development emphasizing integrated use of CASE products. The integration of tools, methodology, management, and project and user teams. Topics include evaluation and implementation of CASE products, object-oriented modeling, and methods for real-time systems. Case studies and systems project. Prerequisite: IS 475 or SE 465.

IS 571 **Software Maintenance.** Maintenance characteristics, tasks, side effects; issues and techniques. Management considerations. Productivity in the maintenance environment. Structured technologies and maintenance.

IS 572 **Computer Security.** Security issues and problems specific to the computer environment. Software and hardware protection mechanisms including encryption and authorization schemes. Special security problems in distributed and teleprocessing environments. **Prerequisite:** CSC 446 or consent.

IS 574 **Decision Support Systems and Expert Systems.** Analysis, design and implementation of systems for decision support and strategic planning, including decision support systems (DSS), group decision support systems (GDSS), expert systems (ES), executive information systems (EIS), and other applications of artificial intelligence. Case studies, projects on applications, and evaluation of software. **Prerequisite:** IS 475 or SE 465.

IS 575 **Information Retrieval.** Introduction to the design and analysis of computer-based information storage and retrieval systems. Retrieval systems using natural language, question-answering techniques. Storage and retrieval of unstructured and well-structured data. On-line inventory systems and bibliographic search systems. **Prerequisite:** CSC 459 or consent.

IS 577 **Management of Information Technology.** Information technology and resource management. Assessment of information technology trends, application of portfolio resources, managing application development and end-user computing, information resource and asset control, strategic applications, and strategic information technology planning. Diffusion theories and stage models. Case studies. **Prerequisite:** IS 475 or SE 465 or completion of Core Knowledge phase in Telecommunications.

IS 596 **Topics in Information Systems.** **Prerequisite:** consent of instructor. Independent Study form required.

IS 690 **Research Seminar.** Readings and discussion on current research topics. Students may register for this course no more than twice. **Prerequisite:** consent of the instructor.

IS 696 **Master's Project.** Four credit hours. Students may register for this course only after their advisor has approved a written proposal for their project. **Prerequisite:** consent of advisor. Independent study form required.

IS 698 **Master's Thesis.** Two credit hours. Students may register for this course only after their advisor has approved a written proposal for their thesis. Students must continue to register for this course every quarter after their first registration in it until they complete their project or thesis to the satisfaction of their advisor. They earn two hours of credit for each such registration but only four hours of credit will apply for degree credit. **Prerequisite:** consent of advisor. Independent study form required.

SOFTWARE ENGINEERING COURSE OFFERINGS

Completion of the Prerequisite Phase is required for all courses not listing specific prerequisites.

SE 430 **Object-Oriented Modeling.** Object-oriented modeling techniques for analysis and design. Emphasis on one approach and a survey of several alternative approaches, for example, Codd and Yourdon, Booch, Rumbaugh, and Shlaer and Mellor. Relationship between these modeling techniques and the features of object-oriented languages including C++. Team project. **Prerequisite:** CSC 315.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE 431</td>
<td>Formal Software Specifications and Development I.</td>
<td>This course will focus on practical applications of formal software specification and design techniques. Topics include a survey of formal specification approaches and languages, model-oriented specifications, design refinement, and supporting tools for formal software development. Prerequisite: SE 465.</td>
</tr>
<tr>
<td>SE 433</td>
<td>Software Testing.</td>
<td>Software testing strategies. Designing test plans and test cases. Design reviews, walkthroughs, and inspections. Configuration management. Prerequisite: CSC 315.</td>
</tr>
<tr>
<td>SE 455</td>
<td>Software Development Methods.</td>
<td>Techniques for designing, implementing and testing large-scale software systems, as well as principles and methods for developing high quality software systems. Object-oriented technology and its applications. Topics include: object-oriented design methods and notations, object-oriented programming and testing, formal specifications, and programming methodologies. Prerequisite: CSC 417.</td>
</tr>
<tr>
<td>SE 465</td>
<td>Software Engineering Principles.</td>
<td>Survey of fundamental concepts and principles in software engineering. Requirements analysis and software specification, requirements validation and prototyping, and formal specifications. Software design. Software testing. Software project measurements and management. Social issues and ethics. Students will work on team projects. Prerequisite: CSC 315.</td>
</tr>
<tr>
<td>SE 466</td>
<td>Software Engineering Projects.</td>
<td>Emphasize on team work, application of development and management techniques and use of CASE tools. The projects involve requirements analysis, requirements validation and inspection, object-oriented design, implementation, testing, integration, demonstration, and presentation. Prerequisite: SE 465.</td>
</tr>
<tr>
<td>SE 467</td>
<td>Software Reliability.</td>
<td>The practical application and theory of software reliability models. Classification and comparison of software reliability models. Parametric estimation. Prerequisites: CSC 323 and MAT 145.</td>
</tr>
<tr>
<td>SE 468</td>
<td>Software Measurement and Project Estimation.</td>
<td>Software metrics. Productivity, effort and defect models. Software cost estimation. Prerequisites: CSC 423 and either SE 465 or IS 475.</td>
</tr>
<tr>
<td>SE 477</td>
<td>Software and Systems Project Management.</td>
<td>Planning, controlling, organizing, staffing and directing software development activities or information systems projects. Theories, techniques and tools for scheduling, feasibility study, cost-benefit analysis. Measurement and evaluation of quality and productivity. Prerequisite: SE 465 or IS 475.</td>
</tr>
<tr>
<td>SE 480</td>
<td>Software Architecture.</td>
<td>Software architecture is a critical aspect of complex software systems. A system's architectural design is concerned with describing its decomposition into computational elements and their interactions. Architectural design tasks involve system decomposition; global control structures; protocols for communication, synchronization, data access; physical distribution of components; performance tuning; defining evolution paths; and selecting design alternatives. Major issues addressed include: architectural description, formal underpinnings, design guidance, domain-specific architecture, tools and environments. Prerequisite: SE 430.</td>
</tr>
</tbody>
</table>
SOFTWARE DESCRIPTIONS

SE 529 **Software Risk Management.** Identification, estimation, evaluation, planning, controlling, and monitoring of risk involved in the development, maintenance, operation and evolution of systems. **Prerequisites:** CSC 323, SE 465 or IS 475.

SE 531 **Formal Software Specifications and Development II.** Techniques for specifying software requirements using formal language. Model-base and algebraic formal specifications. Cleanroom software development. Application of formal methods in real software development projects. **Prerequisite:** SE 431.

SE 533 **Software Validation and Verification.** Techniques, methods and tools for software inspection and testing. Theory and applications of formal verification of programs. Techniques and tools for automated analysis of programs. **Prerequisite:** SE 465 or IS 475.

SE 558 **Software Methodologies.** Recently developed techniques for software requirements analysis, specification, and design. **Prerequisite:** SE 465 or IS 475.

SE 690 **Research Seminar.** Readings and discussion on current research topics. Students may register for this course no more than three times. **Prerequisite:** consent of the instructor.

SE 696 **Master's Project.** Four credit hours. Students may register for this course only after their advisor has approved a written proposal for their project. **Prerequisite:** consent of advisor. Independent study form required.

SE 698 **Master's Thesis.** Four credit hours. Students may register for this course only after their advisor has approved a written proposal for their thesis. **Prerequisite:** consent of advisor. Independent study form required.

TELECOMMUNICATIONS AND DATA COMMUNICATIONS COURSE OFFERINGS

Completion of the Prerequisite Phase is required for all courses not listing specific prerequisites.

TDC 411 **Computers in Information Systems and Telecommunications.** An introduction to computer organizations and operating systems. Computer components and functions, logic circuits, internal processing, multiprogramming, timesharing, memory management, file management, interrupts and I/O peripheral devices. **Prerequisite:** CSC 215.

TDC 432 **Computer and Information Systems Modeling.** Simulation, analytic modeling, and measurement of computer and information systems. Operational analysis. Introduction to queuing theory. **Prerequisites:** CSC 415 and either 343 or 411.

TDC 461 **Basic Communication Systems.** A history of telecommunications and regulatory and regulatory agencies. The basic communication model and its application to different communication systems, communication models. The telephone architecture, a typical data communication system, common carrier services, mediums and their characteristics. **Prerequisites:** PHY 405 is recommended.

TDC 462 **Data Communications.** Theory and components of data communication systems; modes, codes, and error detection techniques for data transmission, network protocols and line control procedures, communication carrier facilities and system planning. **Prerequisite:** TDC 411 or CSC 345.

TDC 463 **Computer Networks and Data Systems.** A detailed discussion of the seven layers of the ISO reference model. The design of interfaces and protocols. Network protocol organization will be discussed using TCP/IP and OSI protocols as examples. **Prerequisite:** TDC 411 or CSC 343.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDC 489</td>
<td>Queuing Theory with Computer Applications</td>
<td>An overview of queuing theory. Queuing systems, related random processes, classification of queues. Priority queueing. Computer time sharing and multi-access systems. Prerequisite: TDC 432 or consent.</td>
<td></td>
</tr>
<tr>
<td>TDC 511</td>
<td>Telecommunications Practicum</td>
<td>Introduction to the functionality and management of voice and data communications equipment in the Telecommunications and Local Area Networks laboratories. Emphasis will be on practical understanding and experience through laboratory exercises. Prerequisite: TDC 463 and TDC 461.</td>
<td></td>
</tr>
<tr>
<td>TDC 512</td>
<td>Cellular and Wireless Telecommunications</td>
<td>An overview of cellular telephony including regulatory framework, RF design and frequency reuse, signaling and wireline interconnection issues. Personal Communications Systems (PCS), mobile radio, satellite and paging systems will also be considered. Prerequisite: TDC 464.</td>
<td></td>
</tr>
<tr>
<td>TDC 513</td>
<td>Client/Server Technologies</td>
<td>Design issues in the deployment of client/server systems. Robust server operations. Fault tolerance and distributed processing. Middleware and applications interfaces. Prerequisites: CSC 452 and TDC 561.</td>
<td></td>
</tr>
<tr>
<td>TDC 514</td>
<td>Computer Telephony</td>
<td>A study of enabling technologies allowing the integration of voice communications services with personal computers, LANs and mainframes. Telephony programming interfaces, call management software, intelligent fax/data retrieval and interactive voice response systems will be considered. Prerequisites: TDC 463 and TDC 464.</td>
<td></td>
</tr>
<tr>
<td>TDC 561</td>
<td>Distributed Processing</td>
<td>A high-level understanding of network architectures and distributed applications; client/server models; remote procedure call; examples of applications such as electronic mail and file transfer; network programming. Prerequisite: TDC 463.</td>
<td></td>
</tr>
<tr>
<td>TDC 562</td>
<td>Computer-Communication Network Design and Analysis</td>
<td>Quantitative approaches to the design of data communications networks. Practical examples of networks. Statistical multiplexing and buffering at communication concentrators. Topics in overall network design. Prerequisites: TDC 432, TDC 462, or consent.</td>
<td></td>
</tr>
<tr>
<td>TDC 563</td>
<td>Protocols and Techniques for Data Networks</td>
<td>Packet communications; transport protocols; terminal, file transfer, and remote job protocols; packet broadcast protocols; security; database management in distributed networks. Prerequisite: TDC 463 or consent.</td>
<td></td>
</tr>
<tr>
<td>TDC 564</td>
<td>Local Area Networks</td>
<td>A detailed discussion of the current standards and technology. Medium access techniques, topologies, network operating systems, applications, and an introduction to several commercial and research networks. Prerequisite: TDC 463.</td>
<td></td>
</tr>
</tbody>
</table>
COURSE DESCRIPTIONS

TDC 565 *Voice and Data Integration.* Methods for data transmission and switching over Wide Area Network telecommunications facilities. DDS and T1 networking. Alternate voice digitization techniques. Microwave, satellite and fiber optic transmission systems. Structure and evolution of the digital telecommunications network. **Prerequisites:** TDC 462 and TDC 464.

TDC 566 *Integrated Services Digital Networks.* A study of the Integrated Services Digital Network (ISDN) including its structure, services and protocols. How current network switching and transmission methods must be modified and expanded to allow integration of voice and data services. A survey of current LEC and IXC ISDN offerings. Future trends in integrated communication networks. **Prerequisites:** TDC 463 and TDC 464.

TDC 567 *Telecommunication Systems Design and Management.* The theory and practice of Telecommunication system design. Ongoing systems management. Telecommunication management including selection of vendors/systems, structuring an RFP systems proposal analysis, computer aided telecommunications management. Telecommunication management strategies from a business perspective. **Prerequisite:** TDC 464. TDC 565 is recommended.

TDC 568 *Network Management.* Data network management systems. Fault, accounting, configuration, performance and security management using SNMP and other protocols. **Prerequisite:** TDC 463. TDC 561 is recommended.

TDC 572 *Network Security.* Computer communications system security issues, including private and public key encryption and key distribution, challenge and authorization protocols, and password management issues. Security issues in file transfer and sharing, electronic mail, and network management applications.

TDC 593 *Topics in Telecommunications.* **Prerequisite:** consent of instructor. Independent study form required.

TDC 597 *Topics in Data Communications.* **Prerequisite:** consent of instructor. Independent Study form required.

TDC 690 *Research Seminar.* Readings and discussion on current research topics. Students may register for this course no more than twice. **Prerequisite:** consent of the instructor.

TDC 696 *Master's Project.* Four credit hours. Students may register for this course only after their advisor has approved a written proposal for their project. **Prerequisite:** consent of advisor. Independent study form required.

TDC 698 *Master's Thesis.* Two credit hours. Students may register for this course only after their advisor has approved a written proposal for their thesis. Students must continue to register for this course every quarter after their first registration in it until they complete their project or thesis to the satisfaction of their advisor. They earn two hours of credit for each such registration but only four hours of credit will apply for degree credit. **Prerequisite:** consent of advisor. Independent study form required.

INSTITUTE FOR PROFESSIONAL DEVELOPMENT OFFERINGS

Application and registration information for the following programs may be obtained by
calling the Institute office at 312-362-6282. Students should consult with their advisor prior
to registering for an IPD program to determine how it may apply to their degree program.

IPD 378 Executive Personal Computing Program. A ten-week integrated certificate pro-
gram in microcomputing and computer technology for business professionals. Program offered through the Institute for Professional Development; enrollment is restricted.

IPD 379 Client/Server Technology Program. An eleven-week intensive program providing
an in-depth introduction to client/server computing for programmers and man-
gers. Program offered through the Institute for Professional Development; enrollment is restricted.

IPD 383 Visual C++ Program. An eleven-week accelerated program covering object-orien-
ted Windows 95 software development using Visual C++. Program offered through the Institute for Professional Development; enrollment is restricted.

IPD 384 Windows Software Development Program. An eleven-week intensive certificate
program in the fundamentals of MS Windows and client/server technology for program-
ers. Program offered through the Institute for Professional Development - enrollment is restricted.

IPD 385 Web Developer Program. A ten-week in-depth program covering the technologies
and techniques of Web development for systems professionals. Program offered through the Institute for Professional Development; enrollment is restricted.

IPD 392 Telecommunications Program. A twelve-week integrated certificate program in
telecommunications technology, systems and management. Program offered through the Institute for Professional Development; enrollment is restricted.

IPD 393 Local Area Networks Program. A ten-week intensive certificate program in the
fundamentals of local area networks, wide area networks and data communications
for LAN managers and data processing professionals. Program offered through the Institute for Professional Development; enrollment is restricted.

IPD 397 Computer Career Program. A thirty-week accelerated certificate program
designed for those considering a change into the computer field. Program offered through the Institute for Professional Development; enrollment is restricted.

COURSES FROM OTHER DEPARTMENTS

MAT 458 Statistical Quality Control. Consult the Department of Mathematics section of
the Graduate Programs Bulletin for the description of this course.

Courses Related to the MIS Degree

GSB 499 Effective Communication. The introductory course for the Kellstadt Graduate
School of Business draws on factors that make DePaul University distinctive: its Vincentian values, pragmatism and strong relationship with the Chicago business community. The course gives students the opportunity to develop knowledge and skills in communication necessary to effectively influence business and social decision-making. Students are encouraged to examine their personal role in the corporate environment through self-management, and forming and maintaining business relationships. The course examines the dynamics of communication in interpersonal transactions and in decision-making for business and society while exposing the student to specific skills necessary for success in DePaul’s graduate programs and today’s challenging global business environment. **Prerequisite:** graduate standing.
BLW 500 **Legal and Ethical Environment.** This is an introduction to the nature and sources of law, including an analysis of ethical perspectives present in the judicial process. Students will learn how legal and ethical issues influence the decision-making process of managers. Students will examine utilitarianism, the rights and justice perspective, and professional obligations as they are represented in the law. Students will explore the relationship between personal values and business decisions, and whether there exists a social responsibility of managers. This course will cover legal concepts relevant to business including basic concepts of public law (constitutional and administrative law) and private laws (sales and product liability). Students will examine business organizations and issues in employment law. **Prerequisite: graduate standing.**

ECO 500 **Money and Banking.** This course examines the role of money in the economy from both a functional and macroeconomic perspective. The role of the Federal Reserve as a monetary policy-maker will be examined in detail. Students completing this course will be able to make informed judgments of the impact of monetary and fiscal policy on inflation, interest and exchange rates, and the general level of economic activity. **Prerequisite: mathematics workshop, or equivalent.**

ECO 509 **Business Conditions Analysis.** This course teaches students how to use available economic data to assess business conditions. This is done by: (1) evaluating the sources and usefulness of data periodically released by government and private sources and (2) developing a macro-economic framework that the student can use to analyze business conditions. Completion of this course will allow students to understand economic news and relate it to their business or job. **Prerequisites: mathematics and statistics workshops, or equivalent.**

FIN 500 **Financial Institutions and Markets.** This course covers the structure and functions of the most important financial institutions and financial markets. Coverage includes the banking system, saving institutions, other financial institutions, money markets, capital markets, and markets for derivative securities. **Prerequisite: mathematics workshop, or equivalent.**

IB 500 **Global Economy.** This course is designed to be an introduction to the economic environment in which businesses operate. With the increasing interdependence of national economies and the growing role of global enterprises, the understanding of international economic issues is vital to decision-makers. The material covered will include both socio-cultural aspects and economic and financial dimensions of global business. Students should obtain a grasp of the basic theory as well as a knowledge of the major current issues in the global economy. **Prerequisite: graduate standing.**

Accounting 500 **Financial Accounting.** This introduction to financial accounting provides both a theoretical foundation and an opportunity to apply accounting logic in increasingly complex situations. The accounting model and information processing cycle are developed. The content of the Income statement, balance sheet, and statement of cash flows are studied in detail and analyzed. **Prerequisite: graduate standing.**
Microcomputer Uses in Decision-Making. Hands-on use of microcomputers as tools for solving business problems. Students will learn to apply existing software and to construct their own worksheets. Emphasis will be on problem formulation, input preparation and solution analysis. Problems are selected from areas such as allocation of scarce resources, capital budgeting, inventory planning and control, pricing and performance evaluation. Offered Autumn, Spring. Prerequisites: basic knowledge of Lotus 1-2-3, GSB 502 and either Accounting 542A or GSB 511 and permission of instructor.

Design and Construction of Decision Models. This course covers the art of decision model construction and the application of existing decision models to managerial planning, control and decision-making. Existing models covered include linear programming and sensitivity analysis, learning curves, correlation analysis, inventory control models, PERT, and CPM. Students will learn to apply probability and utility theory to decision-making under uncertainty, as well as to apply the concepts of game theory to conflict situations in a business setting. If time permits, the application of Markov processes and simulation to managerial planning and decision situations will be covered. Extensive microcomputer applications will be used in this course. Offered variably. Prerequisite: Completion of Phase I or equivalent.

Accounting Systems. Today's business person requires a fundamental knowledge of computer-based information systems and their role in accounting functions and financial decision-making. This course will enable the student to interface with accounting systems, to participate in their design and audit, and to use microcomputers effectively in financial planning, control and analysis. Topics include: advance data processing concepts; computer security and controls; systems analysis, design and implementation; hardware/software evaluation and selection; database systems; data communications; and office automation. Students will gain substantial hands-on experience on microcomputers using Lotus 1-2-3 and Lotus Symphony.

Management Consulting in the Accounting Profession. This course provides an overview of the scope and practice of management consulting and management advisory services (MAS) in the accounting profession. The process of management consulting is examined including: problem identification; proposal development, fact-finding, solution analysis and implementation of recommendations. Case studies will be used in the course to demonstrate the process of management consulting in various areas. The course reviews the professional standards and ethics of management consulting practice. In addition, the course includes the marketing and engagement management aspects of management consulting. Offered: variably. Prerequisite: completion of Phase I or equivalent.

Management Information Systems

Systems Analysis and Design: Concepts, Tools and Techniques. This course is designed as the first of two courses. It focuses on the early phases of the information systems development life cycle and covers primarily process-oriented techniques, methods and methodologies. This course prepares students for the case study-oriented MIS 676 course where learned techniques are applied. Laboratory exercises include the use of a computer-aided software engineering (CASE) tool. Offered Autumn, Winter, Summer. Prerequisites: completion of Phase I and MIS 670 or equivalent.
675 **Advanced Systems Techniques.** This course assumes a familiarity with basic systems techniques and tools such as data gathering, recording and analysis, flow charting, decision tables, system implementation, etc. Topics to be covered include systems concepts and philosophy, project management, advanced tools of systems analysis and design, the human element in systems, and the like. **Prerequisite: MIS 676 or equivalent or permission.**

676 **Management Information Systems: Planning, Design and Implementation.** The second of a two-course sequence for MIS majors. It summarizes and extends the concepts of functionally oriented, structured, and data-oriented methodologies and CASE tools and focuses on applying them. It covers other topics of interest to the systems developers and systems manager, such as: methodologies for systems development without programmers (prototyping, 4th generation languages, end user computing), management of information services including information center concepts, and analysis and design of decision support and expert systems. Offered Winter, Spring. **Prerequisites: MIS 671 and MIS 674 or equivalent.**

677 **Information Systems Project Management.** Projects are often late, over-budget, technically inoperable, operationally infeasible, and in some cases never finished. One of the roots of this problem has been the lack of experienced management. What is needed are appropriate managerial procedures of planning, scheduling and control that are responsive to the needs of the environment. This course will define the essential components of good project management. Although the emphasis will be on management of systems and data processing projects, the concepts and techniques presented will be general enough to be of value to those involved with the design and implementation of any project. Offered Winter, Summer. **Prerequisite: MIS 674 or equivalent or permission.**

678 **Problems in Systems Design.** Problems in systems design, analysis, implementation and management are presented, discussed and analyzed. The emphasis in this course is on developing an analytical ability for dealing with systems problems and a professional capability in planning and managing systems. Offered Spring. **Prerequisite: MIS 676 or equivalent or permission.**

679 **Graduate Seminar in Information Systems.** Formal aspects of the course will provide a framework for integrating the various areas and disciplines studied in other courses. Readings, classroom discussion and group participation will be required of all students. Offered Winter and Spring. **Prerequisite: MIS 674 or permission.**

683 **Information Processing Management** (cross-listed as CSC 483). The organization of the Information Systems Department. Staffing, documentation and performance standards. The budget process. Design and layout of data processing facilities. Hardware/software specifications and selection. Offered variably. **Prerequisite: MIS 676 or equivalent.**
Computers in Society. The computer has had a profound effect on individuals, organizations and society as a whole. Its effects have been both positive and negative. Computer-based systems are currently implemented in virtually every field of endeavor and in the future will, in all likelihood, have an even greater impact than they have now. Developments within this field have occurred very rapidly over a relatively short period of time, so that we must now consider the implications of this revolution on the individual, on organizations, and on society as a whole. This course will examine the historical perspective, the computer industry, implications for the individual, effects on organizational practice, privacy and the quality of life, professionalism and ethics, and future trends. Offered variably. Prerequisite: MIS 670 or equivalent.

Security, Accuracy and Privacy in Computer Systems. Management decisions are increasingly being made on the basis of information provided to managers by the data processing system rather than on the basis of experience and intuition alone. In order for this information to be reliable, it must be accurate and its integrity must be maintained. Data and records are vital assets to an enterprise and therefore must be guarded against unauthorized access and manipulation just as other, more tangible, assets are guarded. Just as data and records are important to an enterprise and therefore must be accurate and secure, so are an individual’s data and records important to him/her. Therefore, the issues of privacy—who is authorized to examine an individual’s records—and accuracy—the completeness and correctness of the records—are critical. The three subjects are related in their technical solutions and hence should be considered together in the planning of computer installations. Offered variably. Prerequisite: MIS 676 or equivalent.

Decision Support Systems and Expert Systems. A seminar on the planning, design and implementation of decision support systems (DSS) and expert systems (ES). The emphasis of the course is on developing and building decision support systems. Consideration will also be given to end user computing and the evaluation and selection of DSS generators and ES skills. Students will gain hands-on experience in using DSS generators such as IFPS, prototyping languages such as FOCUS, and expert system skills. The course will include readings, a research paper and presentations. Offered Spring. Prerequisite: MIS 676 or equivalent or permission.

Special Topics. Content and format of this course are variable. An in-depth study of current issues in management information systems. Subject matter will be indicated in class schedule. Offered variably. Prerequisite: as indicated in class schedule.

Management

Managing People I. Students will critically examine and creatively solve problems of managing individuals and teams within organizations. Fundamental principles of perception, attribution, motivation and learning will be applied as participants engage in the study of leadership, empowerment, team development, managing innovation and change, decision processes, business ethics, and power and politics. Prerequisite: graduate standing.
Operations Management. This course provides an introduction and overview of the field of operations management. Students will learn how the operations function of a firm is responsible for the creation and distribution of goods and services. Major problems and ethical issues concerning the management of domestic and international operations are addressed. Quantitative and qualitative concepts of quality and continuous improvement are applied to both the manufacturing and service sectors. **Prerequisites:** mathematics and statistics workshops, or equivalent.

Quality Control. This course offers a treatment of several specific production and operations management functional areas including: statistical process control, total quality control, just-in-time, enhanced scheduling technologies, and productivity measurement. The interrelationship of these topics is identified and applications are discussed in various manufacturing and service environments. Offered Autumn, Spring. **Prerequisite:** completion of Phase I or equivalent.

Operations Research. This course focuses on a scientific approach to problem solving and model building. Topics covered include mathematical programming, integer programming, Markov processes, game theory and simulation. Emphasis is placed on application models, computer implementation and solutions. **Prerequisite:** MGT 501.

Management of Innovation and Technological Change. This course provides a foundation for managing technology in a competitive environment with global implications. Managing technology, whether in R&D or the finance department, requires the manager to understand, utilize and support technology. Technology is discussed as a critical component, along with people and skills, in adding value to products and services. Other topics discussed include entrepreneurship, a technology foundation, deployment of technology, and the industry evolution process. Selected emerging technologies and their future evolutions are studied. Offered Winter. **Prerequisite:** completion of the internal and external environment courses or equivalent.

Marketing Information Systems for Decision Support. This course explores the development of a systems approach to the collection, analysis and distribution of marketing information within the organization. Topics include expert systems, database development and maintenance, and planning and control systems for marketing decision-making. Offered variably. **Prerequisite:** MIS 500, ACC 555, MKT 555, and MKT 525 or equivalent.
HANDBOOK FOR
GRADUATE STUDIES
THE UNIVERSITY
CAMPUSES
LIBRARIES
ACADEMIC COMPUTING FACILITIES
CAREER DEVELOPMENT CENTER
RESIDENCE LIFE

ACCREDITATION
HONOR SOCIETIES
BOARD OF TRUSTEES
• GENERAL ADMINISTRATION
ADMISSION AND REGULATIONS
TUITION AND FEES
FINANCIAL AID
ACADEMIC CALENDAR
STATEMENT OF VINCENTIAN CHARACTER
THE UNIVERSITY

CAMPUSES

DePaul University has six locations. The Lincoln Park Campus is situated about three miles north of the Chicago Loop in the vicinity of Webster (2200 N), Halsted (800 W) and Racine (1200 W). The College of Liberal Arts and Sciences, The School of Music, The School of Education and The Theatre School are located on the 30-acre campus.

The Loop Campus, between State Street and Wabash Avenue at Jackson Boulevard, houses the general administration of the University, the College of Law, the College of Commerce and the School for New Learning.

The O'Hare Campus is located near O'Hare Airport at 3166 River Road, DesPlaines—just north of the intersection of River Road and Devon. The Oak Brook Campus is located at Two Westbrook Corporate Center, Suite 200, in Westchester—on 22nd Street, just east of the I-294 Tollway. The South Campus is located at South Suburban Community College's University and College Center, 16333 South Kilbourn Avenue, Oak Forest—at I-57 and 167th Street. The West Campus is located at 1804 Centre Point Drive, Suite 104, Naperville, Illinois (at I-88 and Naperville Road). The College of Commerce, the School of Computer Science, Telecommunications and Information Systems, the College of Liberal Arts and Sciences and the School for New Learning offer courses at a number of these sites.

UNIVERSITY LIBRARIES

The DePaul Libraries provide resources and services to students, faculty and staff through seven different units: The Lincoln Park Library, the Loop Campus Library, the Law Library, the Oak Brook Library, O'Hare Campus Library, the South Campus Library and the West Campus Library. The delivery of information and materials is increasingly linked to computer technologies. Access to materials in all the DePaul Libraries is provided through ILLINET Online, the Libraries' online catalog and circulation system. From the same terminal, students and faculty can identify and check out books from 45 other colleges and universities in Illinois, including the University of Illinois. A second component of ILLINET Online allows users to search the catalogs of over 800 libraries around the state. Furthermore, materials from libraries across the United States can be located and obtained through other computer networks. Electronic networked access to periodical articles and other information resources in the social sciences, business, humanities and sciences is readily available through online and compact disc (CD-ROM) data bases at all campuses.

The combined collection of the DePaul University Libraries includes over almost 700,000 volumes, over 300,000 microform volumes, over 9,000 current serial subscriptions, and a varied microcomputer software and audiovisual collection. Information, brochures and bibliographies are available in all seven locations.

The Lincoln Park Campus Library supports programs in the College of Liberal Arts and Sciences, the School of Education, the School of Music and The Theatre School. Areas of particular strength are religion, philosophy and Irish studies. Facilities include a media area for using audiovisual materials and the Education Resource Center with curriculum materials for elementary and secondary school teaching, a slide library, a Career Information Center and a collection of music recordings and scores. Rare book collections include the Napoleon Collection, the Dickens Collection and the Sporting Collection, as well as numerous titles dealing with 19th-century literature and book illustration. The University Archives focuses on various materials documenting the growth and development of DePaul.

The Loop Campus Library primarily focuses on business materials to support the programs of the College of Commerce but also has core collections of materials in other subjects. A Career Information Center provides resources on career choice, job search techniques and company information. Other useful collections include the industry file and the corpo-
rate annual report file.

The library of the College of Law has an extensive collection of Anglo-American legal materials, and provides both basic and advanced resources needed for study and research in the law school curriculum. The collection includes reports of American federal and state courts; court reports of Great Britain; the codes, constitutions and statutes of all fifty states and American territories; materials on tax law; and legal periodicals. Designated an official depository for government publications, the Law Library provides a selective collection of federal documents.

The Oak Brook, O'Hare, South and West Campus Libraries offer an innovative approach to library service by providing access to information using computers and telecommunications. There is no permanent book collection; electronic access to DePaul and other libraries' holdings is provided through complete access to all the library's networked information resources, including ILLINET Online and CD-ROM databases. Books and other journal articles needed by students and faculty are delivered by a daily intra-university shuttle service.

ACADEMIC COMPUTING FACILITIES

Information Services (IS) provides facilities and resources to support instruction and research at DePaul University. DePaul's campus-wide network connects the Microcenters, computer classrooms and faculty offices on its six campuses to computing resources. These resources consist of three Sun SparcServers (Unix) and approximately 20 Novell Netware

<table>
<thead>
<tr>
<th>ACADEMIC COMPUTING FACILITIES AVAILABLE AT DEPAUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOOP CAMPUS</td>
</tr>
<tr>
<td>Computer Science &</td>
</tr>
<tr>
<td>Telecommunications Center 400</td>
</tr>
<tr>
<td>243 South Wabash</td>
</tr>
<tr>
<td>(312) 362-8336</td>
</tr>
<tr>
<td>60 Windows Workstations</td>
</tr>
<tr>
<td>Lewis Center 1420</td>
</tr>
<tr>
<td>25 East Jackson Boulevard</td>
</tr>
<tr>
<td>(312) 362-8993</td>
</tr>
<tr>
<td>50 Windows Workstations</td>
</tr>
<tr>
<td>12 Macintosh Workstations</td>
</tr>
<tr>
<td>Computer Classrooms</td>
</tr>
<tr>
<td>Lewis Center 13th Floor</td>
</tr>
<tr>
<td>25 East Jackson Boulevard</td>
</tr>
<tr>
<td>(312) 362-8177</td>
</tr>
<tr>
<td>3 Classrooms</td>
</tr>
<tr>
<td>100 Windows Workstations</td>
</tr>
<tr>
<td>LINCOLN PARK CAMPUS</td>
</tr>
<tr>
<td>Schmitt Academic Center 235</td>
</tr>
<tr>
<td>2320 North Kenmore</td>
</tr>
<tr>
<td>(773) 325-7000, x1097</td>
</tr>
<tr>
<td>128 Windows Workstations</td>
</tr>
<tr>
<td>34 Macintosh Workstations</td>
</tr>
<tr>
<td>Byrne Hall 358</td>
</tr>
<tr>
<td>2219 North Kenmore</td>
</tr>
<tr>
<td>(773) 325-7000, x1088</td>
</tr>
<tr>
<td>20 Windows Workstations</td>
</tr>
<tr>
<td>McGaw Hall 145</td>
</tr>
<tr>
<td>802 West Belden</td>
</tr>
<tr>
<td>(773) 325-7000, x1096</td>
</tr>
<tr>
<td>25 Windows Workstations</td>
</tr>
<tr>
<td>OAK BROOK CAMPUS</td>
</tr>
<tr>
<td>2 Westbrook Corporate Center</td>
</tr>
<tr>
<td>Westchester, IL</td>
</tr>
<tr>
<td>(312) 362-7405</td>
</tr>
<tr>
<td>38 Windows Workstations</td>
</tr>
<tr>
<td>SOUTH CAMPUS</td>
</tr>
<tr>
<td>16333-South Kilbourn Road, Room 5004</td>
</tr>
<tr>
<td>Oak Forest, IL</td>
</tr>
<tr>
<td>(708) 693-9093</td>
</tr>
<tr>
<td>14 Windows Workstations</td>
</tr>
<tr>
<td>WEST CAMPUS</td>
</tr>
<tr>
<td>1804 Centre Point Drive, Suite 104</td>
</tr>
<tr>
<td>Naperville, IL</td>
</tr>
<tr>
<td>(312) 362-6481</td>
</tr>
<tr>
<td>20 Windows Workstations</td>
</tr>
<tr>
<td>O'HARE CAMPUS</td>
</tr>
<tr>
<td>3166 River Road, Room 207</td>
</tr>
<tr>
<td>Des Plaines, IL</td>
</tr>
<tr>
<td>(312) 362-7608</td>
</tr>
<tr>
<td>50 Windows Workstations</td>
</tr>
<tr>
<td>ACADEMIC TECHNOLOGY DEVELOPMENT OFFICES</td>
</tr>
<tr>
<td>Computer Science & Telecommunications Center</td>
</tr>
<tr>
<td>243 South Wabash Avenue, Room 500</td>
</tr>
<tr>
<td>(312) 362-8177</td>
</tr>
<tr>
<td>Richardson Library 126</td>
</tr>
<tr>
<td>2350 North Kenmore Avenue</td>
</tr>
<tr>
<td>(773) 325-7166</td>
</tr>
</tbody>
</table>
servers. The Microcenters offer Windows and Macintosh workstations, high-speed line printing and laser printing. They also offer access to the Internet through a variety of client applications. The computer classrooms have a computer for each student, and accommodate classes of 27 to 36 students. There are approximately 600 workstations in the Microcenters and computer classrooms throughout DePaul. Dial-in access is also available, including v.34 SLIP-based modem pools for students with DePaul Online accounts.

Students, faculty and staff have access to a variety of applications in the Microcenters, and these are used extensively throughout the DePaul curriculum. IS also offers seminars and workshops on various topics. Brochures listing the workshops and hours of operation are available at all of the above sites.

CAREER DEVELOPMENT CENTER

The University has two offices offering career planning and placement services to graduate students and alumni, providing resources for those exploring career options as well as for those actively involved in a targeted job search. Appointments are available at either the Loop Campus, 9th floor, DePaul Center, or at the Lincoln Park Campus, first floor of the Schmitt Academic Center.

DePaul’s Career Development Center professionals are committed to helping the student develop skills in identifying career opportunities, and seeking out and securing satisfying employment. The tools utilized by the staff include career and job search seminars, mock interviews, career libraries on both campuses, vocational interest inventories, and individual counseling.

Both full- and part-time job leads are available through the Center. Leads for immediate openings are continually listed and updated, and an active on-campus interview program gives students and alumni access to career opportunities.

The Center has recently developed an innovative program for the registration of full-time job seekers. A computerized database allows candidate information to be matched to an employer’s job specifications. Rapid turnaround time has dramatically improved the consideration given candidates referred from DePaul. A job fair is offered once a year to assist graduate students who have work experience in securing employment.

RESIDENCE LIFE

The University does not currently have housing for graduate students. The Residence Life Office, however, provides an off-campus housing listing service for DePaul faculty, staff and students. This service lists available apartments in the Lincoln Park area. The Residence Life Office is located on the third floor of Stuart Center, 2311 N. Clifton Ave. (312/362-8020). Office hours are Monday through Friday, 9:00 a.m. to 5:00 p.m.

ACCREDITATION

DEPAUL UNIVERSITY IS ACCREDITED BY

THE AMERICAN ASSEMBLY OF COLLEGIATE SCHOOLS OF BUSINESS

THE AMERICAN CHEMICAL SOCIETY

THE AMERICAN PSYCHOLOGICAL ASSOCIATION

THE ASSOCIATION OF AMERICAN LAW SCHOOLS

THE NATIONAL ASSOCIATION OF SCHOOLS OF MUSIC

THE NATIONAL COUNCIL FOR ACCREDITATION OF TEACHER EDUCATION

THE NATIONAL LEAGUE OF NURSING

THE NORTH CENTRAL ASSOCIATION OF COLLEGES AND SCHOOLS
DEPAUL IS ON THE APPROVED LIST OF
The American Bar Association
The Illinois Board of Higher Education
The Illinois Department of Registration and Education
The Illinois Office of Education, State Teacher Certification Board
The State Approving Agency for Veterans Training

DEPAUL UNIVERSITY IS A MEMBER OF
The American Association of Colleges of Nursing
The American Association of Colleges for Teacher Education
The American Association of Higher Education
The American Association of Theatre for Youth
The American Association of University Women
The American Council on Education
The Association of Catholic Colleges and Universities
The Association of Governing Boards of Universities and Colleges
The Chicagoland Advocates for Signed Theatre
The Consortium of Conservatory Programs
The Council for Adult and Experiential Learning
The Council of Graduate Schools
The Federation of Independent Illinois Colleges and Universities
The Illinois Arts Alliance
The Illinois League for Nursing
The International Association of Theatre for Children and Young People
The League of Chicago Theatres
The Midwest Alliance in Nursing
The National Association of Independent Colleges and Universities
The National Catholic Education Association
The National Council on Rehabilitation Education

HONOR SOCIETIES
Alpha Lambda Delta
Beta Alpha Psi
Beta Gamma Sigma
Delta Mu Delta
Delta Sigma Pi
Golden Key National Honor Society
Omicron Delta Epsilon
Order of the Coif
Phi Alpha Delta
Phi Alpha Theta
Phi Delta Kappa

Phi Kappa Delta
Phi Kappa Phi
Pi Kappa Lambda
Pi Sigma Alpha
Psi Chi
Sigma Delta Pi
Sigma Pi Sigma
Sigma Theta Tau
Sigma Xi
Theta Alpha Kappa
1995-1996 BOARD OF TRUSTEES

OFFICERS
Jack M. Greenberg
Chair
Edward A. Brennan
Vice Chair
John B. Simon
Vice Chair
Elaine M. Watson
Secretary

MEMBERS
William J. Bauer
William E. Bennett
Norman R. Bobins
Victor J. Cacciatore
Carlos H. Cantu
Denis H. Carroll
Robert A. Clifford
James W. Compton
James B. Cormack, C.M.
Jacob Dickens
Samuel A. DiPiazza
Richard H. Drieuhaus
Jean-Pierre Ergas
David W. Fox
John F. Gagnepain, C.M.
Edward G. Gardner
Sue L. Gin
Jerome D. Girsch
Robert E. Goldberg
Paul L. Golden, C.M.
Howard S. Goss
Richard A. Hanson
Sondra A. Healy
Richard A. Heise
Robert W. Kustra
Anne C. Leonard, C.N.D.
Sheila Lyne, R.S.M.
Alan G. McNally
Thomas F. Meagher
Henry C. Mendoza
John P. Minogue, C.M.
Peter Petse
Roger L. Plummer
Prudencio Rodriguez De Yurre, C.M.
Lawrence C. Russell
Samuel K. Skinner
William B. Snow
John C. Staley
Harrison I. Steans
Richard E. Terry
Angelo Velasquez
John G. Weithers
Joseph E. Wilson
Ernest R. Wish
John A. Zenko

GENERAL ADMINISTRATION
John P. Minogue, C.M.
President
John T. Richardson, C.M.
Chancellor
Richard J. Meister
Executive Vice President for Academic Affairs
Kenneth A. McHugh
Executive Vice President/Vice President for Business/Finance
Elaine M. Watson
Secretary of the University, Vice President for Administration
Maryam Ahmad
Special Assistant to the President on Diversity
James R. Doyle
Vice President for Student Affairs
Helmut P. Epp
Vice President for Information Services
Edward W. Horner, Jr.
Vice President for Institutional Advancement
David O. Justice
Vice President for Lifelong Learning and Suburban Campuses
Robert L. Kozoman
Treasurer of the University
Carole S. Schor
Vice President for Human Resources
Edward R. Udovic, C.M.
Senior Executive for University Mission
Susan H. Wallace
Controller of the University
ADMISSION CLASSIFICATIONS

Applicants are admitted to the School of Computer Science, Telecommunications and Information Systems on the basis of their ability to complete programs of study and research prescribed for the master's and doctoral degrees. Specifically, admission qualifications are measured by academic criteria.

In accord with these criteria, applicants are admitted in one of three major categories: degree-seeking, non-degree-seeking, and student-at-large.

DEGREE-SEEKING STUDENTS

Applicants are admitted as degree-seeking students in either of two ways: full or conditional.

FULL DEGREE-SEEKING STATUS

The minimum requirements for this status are:

- Bachelor's degree conferred by a regionally accredited institution.
- Scholastic achievement in undergraduate studies satisfying all requirements for entering a specific graduate program.
- Unconditional approval by the program director of the applicant's proposed course of graduate study.
- Submission to the School office of all required supporting credentials.

Please note these are minimum requirements for full admission. The program section of this Bulletin provide additional, more specific and selective, criteria for admission to specific programs.

CONDITIONAL DEGREE-SEEKING STATUS

The minimum requirements for this status are:

- Bachelor's degree conferred by a regionally accredited institution.
- Scholastic achievement in undergraduate studies indicating a capacity to pursue successfully a specific program of graduate study.
- Conditional approval by the program director of the applicant's proposed course of graduate study.
- Submission to the School office of all required supporting credentials.

A conditionally admitted applicant is eligible for reclassification to full, degree-seeking status when the conditions of admission have been satisfied.

NON-DEGREE-SEEKING STUDENTS

At the Dean's discretion, applicants who do not wish to pursue an advanced degree may be admitted. Non-degree-seeking students may, at some future date, make application for reclassification to degree-seeking status.

NON-DEGREE-SEEKING STATUS

The minimum requirements for this status are:

- Bachelor's degree conferred by a regionally accredited institution.
- Scholastic achievement in undergraduate studies indicating a capacity to pursue successfully graduate course work.
- Approval by the dean.
- Submission to the School office of all required supporting credentials, including a letter of intent addressed to the dean.
When such students file for reclassification, the program director may recommend, in writing, to the dean that a **maximum of three courses (12 quarter hours)** completed by the student under the non-degree-seeking status be counted toward fulfillment of the advanced degree requirements.

STUDENT-AT-LARGE

The School of Computer Science, Telecommunications and Information Systems may admit as a student-at-large a graduate student currently enrolled in a graduate program in another accredited institution upon the recommendation, in writing, of the student's own graduate dean.

A student-at-large must submit the application for admission to the School office. The only supporting credential required is a letter from the dean of the graduate school where the student is in good standing. This letter should state in general terms the course or courses the student is authorized to take.

Under no circumstances does this classification constitute admission to a degree program at DePaul University.

DEPAUL SENIORS

Seniors in any of the undergraduate colleges or schools of DePaul University are eligible to apply for admission to the School of Computer Science, Telecommunications and Information Systems while completing their undergraduate program.

ADMISSION PROCEDURES

GENERAL PROCEDURES

Procedures for admission to the School of Computer Science, Telecommunications and Information Systems involve a completed application form, supporting credentials, admission fee, deadlines and the dean's admission letter.

- **Application Form:** You can obtain a graduate application form either by mailing your request to the School of Computer Science, Telecommunications and Information Systems Graduate Office, DePaul University, 243 South Wabash, Chicago, Illinois, 60604 or by calling (312) 362-8381. Please include your proposed program of study in your request because the composition of the application packet varies according to the degree.

 Note: An undergraduate DePaul senior is eligible to submit an application to the graduate program before completing the undergraduate program.

- **Supporting Credentials:** Official transcripts of your academic records at all universities, colleges and junior colleges attended are required. Please direct the registrar(s) to mail these official transcripts directly to the School of Computer Science, Telecommunications and Information Systems Office, DePaul University. Since there is frequently a delay in the forwarding of transcripts, you are advised to make your request as early as possible.

 Note: Several programs require additional supporting credentials. Please consult the specific programs listed in this Bulletin to determine what additional materials are required for admission to the specific course of graduate study.

- **Admission Fee:** A check or money order payable to DePaul University in the amount of $25.00 must accompany the completed application form. Any application form received without the fee will be returned unprocessed. The fee is nonrefundable.

- **Dean's Admission Letter:** The dean will notify you by letter of your admission status. It is the policy not to review, evaluate or act upon any application for admission without having the completed application form, all the supporting credentials, and the application fee.

 If you do not enroll at the University within one year of the date of your letter of admission, you must complete an application for readmission.
GRADUATE CREDIT TRANSFER
Credit transfer in degree programs leading to the master's or doctoral degree ordinarily is not allowed. However, the dean may authorize an exception to this policy when, in the judgment of the dean and the program director, the circumstances justify the exception.

INTERNATIONAL STUDENT ADMISSION
Applicants educated outside of the United States must obtain the application for international admission by writing to the Graduate Admission Office. Candidates must meet academic requirements and demonstrate English proficiency with a TOEFL score of 550 or greater (580 or greater for Ph.D. applicants). Those requesting student visas (I-20) must demonstrate adequate financial support. The letter of admission and the visa form I-20 are issued only after admission.

International applicants are strongly urged to make application as early as possible. Usually there are long delays in the forwarding of all supporting credentials.

READMISSION PROCEDURES
If you were previously enrolled in a graduate program in the School of Computer Science, Telecommunications and Information Systems but have not been in attendance for a period of one calendar year or longer, but not more than four calendar years, you must file a readmission form with the School office. (If more than four years have elapsed since you have been in attendance, you must file a new application.) The form must be submitted at least two weeks prior to the day of registration for the term in which you expect to resume your studies. There is a $5.00 service fee for processing a readmission form.

An official copy of transcripts recording scholastic work completed since the last enrollment at DePaul University must be submitted. As a general rule, students are held to the degree requirements that are in force at the time of readmission.

RECLASSIFICATION PROCEDURES
Should you desire a change in your major or admission status, you must file a reclassification application with the School office.

MASTER'S PROGRAM REQUIREMENTS
For the master's degree, all programs involve the following: 1) credit hours, 2) thesis, or comprehensive examination, and 3) program time limitation.

Credit Hours. For the master's degree, most programs for graduate students require fifty-two quarter hours of course work.

Specific degree requirements are listed in the program sections of this Bulletin.

Thesis. The University offers the master's degree both with and without the thesis; however, the thesis is required by some areas. The thesis is limited to the student's field of specialization and should offer satisfactory evidence of the candidate's potential for scholarly research.

The student is advised to consult the School office for information regarding the required form and type of paper to be used for the thesis. Responsibility for fulfilling these requirements lies with the student, not the typist.

The student, after completing the thesis, will submit it to the director of his or her thesis committee for consideration, or the student will not be permitted to graduate until a subsequent convocation. When the thesis is accepted, the student must file the designated number of typewritten copies in the School office. The binding fee is $10.00 per copy, to be submitted along with the copies of the thesis. The date for filing is published in the current Bulletin and the class schedule or may be obtained directly from the School office. The responsibility for meeting this deadline lies with the student.
Comprehensive Examination. The type and the subject matter of the examination follow the regulations established in the various programs. If the student does not pass the examination, the school or program may grant permission for another examination. The examination may not be taken more than twice.

Program Time Limitation. Graduate students in master's programs are expected to complete their program degree requirements within a six-year period from the first registration date for a course in the program. When a graduate student fails to finish before the end of the sixth year, the program director may recommend, on receipt of the student's petition, in writing, to the dean, an extension of time with or without additional courses, examinations or other conditions.

Doctoral Program Requirements

The Doctor of Philosophy, the highest academic degree that DePaul University confers, is offered by the School of Computer Science Telecommunications and Information Systems. The degree shows that the recipient has demonstrated proficiency in a broad area of learning, as well as the potential to explore and advance that field of knowledge by independent research.

Following are the minimum general requirements for all candidates for the Doctor of Philosophy degree in the areas of: 1) credit hours, 2) academic achievement, 3) residence, 4) admission to candidacy, 5) dissertation, 6) final examination and 7) program time limitations. Additional requirements are stated in the program section of this Bulletin.

Credit Hours. For the doctoral degree the graduate student will complete no less than 60 quarter hours of credit beyond the master's degree.

Academic Achievement. A student will be advised to withdraw from the doctoral program when the School judges that the student is not maintaining satisfactory progress toward the degree. Students are required to maintain at least a 3.0 average. A course grade below 2.0 is unsatisfactory and will not be counted toward completing degree requirements. The determination of satisfactory progress is not limited to grades and grade point average, but includes all factors in the student's performance.

Residence. At least three quarters beyond the master's level must be spent in full-time study at DePaul University. Full-time study is defined as registration for a minimum of eight quarter hours in a quarter. With prior approval of the school, the student may satisfy residency by coursework, by participation in seminars, or by research performed off campus.

To reflect the diversity of graduate study for the Ph.D. degree at stages other than the residency stage, doctoral candidates are full-time students who are registered for Reading and Research (four quarter hours); for Thesis Research (four quarter hours); or for Candidacy Continuation (zero hours credit).

Admission to Candidacy. Admission to candidacy implies that the faculty is satisfied that the doctoral candidate is sufficiently knowledgeable in the student's area of specialization and in the use of research tools to be able to prepare an acceptable dissertation.

For admission to candidacy the doctoral candidate shall complete three quarters of full-time study beyond the master's level. Other requirements include a comprehensive examination and allied field study.

The School office will issue to each doctoral candidate a letter to authenticate admission to candidacy. Admission to candidacy will be entered on the doctoral candidate's scholastic record.

There is a time limit of four years between admission to the School of Computer Science, Telecommunications and Information Systems and admission to candidacy. Once admitted to candidacy, the doctoral candidate must maintain registration in the University in each of the quarters of the academic year
until the degree requirements have been completed. Among other courses, the following are appropriate to maintain registration: Independent Study (four quarter hours); Resident Candidacy Continuation (non-credit); or Non-Resident Candidacy Continuation (non-credit). Failure to comply with the policy governing registration in the University, in each of the quarters of the academic year until the degree requirements have been completed, may result in dismissal from the doctorate program. Candidacy status may be reinstated only after the student has applied for readmission (see Readmission Procedures).

Dissertation. The doctoral candidate will prepare a dissertation based on the student’s research. The purpose of the dissertation is to evidence both one’s scholarship and ability to carry on such independent research as definitely contributes to the advancement of knowledge. The topic of the dissertation should be submitted to the dissertation advisor who will assist the student in forming a dissertation committee to approve the topic and to assist the doctoral candidate through all stages in the preparation of the dissertation. The chairperson of this committee is the dissertation advisor.

All doctoral dissertations are to be microfilmed. After all requirements have been completed, the doctoral candidate submits to the School office the designated number of typewritten, unbound, final copies of the dissertation. (The first copy is to be in satisfactory condition for microfilming.) The candidate also prepares and submits a 350-word abstract of the dissertation. The abstract will be published in Dissertation Abstracts and will include an announcement that the dissertation is available in film form. One microfilm copy will be deposited in the University Library and will be available for interlibrary loan.

To defray the costs of microfilming and publication, a fee of $75.00 is collected when dissertation copies are submitted.

Microfilming is considered by the University to be a form of publication. Publication by microfilm, however, does not preclude the printing of the dissertation in whole or in part in a journal or monograph.

Final Examination. The dissertation is the principal basis of the final examination. After completing the dissertation, and at least eight months after admission to candidacy, candidates should submit a petition for the final examination to the School. After the examination, the chair of the committee sends a report of the results, signed by all committee members, to the School office.

When these steps have been completed, the doctoral candidate becomes eligible for degree conformation at the next convocation.

Program Time Limitations. For graduate students in a doctoral program, the time limits to complete the requirements for the Doctor of Philosophy degree are 1) between admission to the doctoral program and admission to candidacy: not more than four years; and 2) between admission to candidacy and the final examination: not less than eight months, and not more than five years.
ACADEMIC INFORMATION AND REGULATIONS

This bulletin is the official statement of the requirements, rules and regulations for the Graduate Programs offered by the School of Computer Science, Telecommunications and Information Systems. This bulletin does not constitute a contract between the student and the University. Every effort has been made to provide accurate and firm information. The University reserves the right to revise the content of its Bulletins and Schedules, and to change policies, programs, requirements, rules, regulations, procedures, calendars and schedule of tuition and fees; to establish and modify admission and registration criteria; to cancel or change courses or programs and their content and prerequisites; to limit and restrict enrollment; to cancel, divide or change time or location or staffing of classes; or to make any other necessary changes.

A student upon admission to a graduate program is to follow the bulletin requirements in effect at the time of entrance. A student who is readmitted or who changes his or her program or enrollment status is subject to the terms of the bulletin in effect at the time of readmission or status change.

As a graduate student you assume the responsibility to know and meet both the general and particular regulations, procedures, policies, and deadlines set forth in this bulletin. All students are expected to adhere to the Student Code of Responsibility found in the Student Handbook. The University follows the requirements outlined in the Family Educational Rights and Privacy Act of 1974 which outlines the rights of students to review their educational records. The procedures for such review and the rights of students in this regard are set forth in the Student Handbook.

Certain student information, known as “Directory Information,” may be disclosed by the institution to outside parties, unless the student has specifically requested that this information not be released. DePaul University considers the following to be Directory Information: name, address, telephone number, college of enrollment, class, major field of study, dates of attendance, degrees and awards received, the most recent educational agency or institution attended by the student, and participation in officially recognized activities and sports. Students who do not want Directory Information released should make a written request to the Office of the Registrar to withhold this information.

ACADEMIC COUNSELING

Academic counseling helps to insure successful completion of graduate studies. If you are a degree-seeking student, contact your faculty advisor. If you are a non-degree seeking student or a student-at-large, contact either your graduate division office, or the appropriate department or program director.

COURSES AND CREDIT

No one is permitted to attend a class for which he or she has not been properly registered. Credit is accumulated on the basis of quarter hours. The unit of credit is one quarter hour granted for 45 minutes of classroom work a week. The normal class extends over a ten-week period (or an accelerated five-week period in the summer). All courses carry four quarter hours of credit (2 2/3 semester hours), unless otherwise noted.

Students enrolled for eight or more quarter hours of credit are considered full-time. Those enrolled for less are considered part-time. For students fully employed, registration for two courses in a term is the suggested maximum.

Courses numbered 300 through 399 are advanced undergraduate courses. If listed in this Bulletin, they may be accepted for graduate credit within the limitations stipulated by the specific departmental chair or program director.
GRADES

Following is the key to the system of evaluating the academic achievement by the student of the educational objectives specified by the instructor in the course syllabus. These definitions apply to the straight letter grade. A plus grade represents slightly higher achievement than the straight letter grade. A minus grade represents slightly lower achievement than the straight letter grade.

A The instructor judged the student to have accomplished the stated objectives of the course in an EXCELLENT manner.
B The instructor judged the student to have accomplished the stated objectives of the course in a VERY GOOD manner.
C The instructor judged the student to have accomplished the stated objectives of the course in a SATISFACTORY manner.
D The instructor judged the student to have accomplished the stated objectives of the course in a POOR manner.
F The instructor judged the student NOT to have accomplished the stated objectives of the course.
IN Temporary grade indicating that the student has a satisfactory record in work completed, but for unusual or unforeseeable circumstances not encountered by other students in the class and acceptable to the instructor is prevented from completing the course requirements by the end of the term. An incomplete grade may not be assigned unless the student has formally requested it from the instructor, and the instructor has given his or her permission for the student’s receiving an incomplete grade.
R Student is making satisfactory progress in a course that extends beyond the end of the term or in a project extending over more than one quarter.
W Automatically recorded when the student’s withdrawal is processed on or before the date designated in the academic calendar for such a withdrawal.
FX Student stopped attending course. This is an apparent withdrawal. The grade can be changed to a “W” grade by the college administration without consulting the instructor if it is determined that the student attempted to withdraw but followed incorrect procedures, or on other administrative grounds. If not administratively removed, it is scored in the grade point average the same as an “F.” Students are advised to contact their college office to initiate the request to correct an FX grade. An FX grade may not be changed if it has remained on the student’s record beyond twelve months except in extraordinary circumstances.

QUALITY POINTS

Quality points are awarded to a student in relation to the grade given and the number of quarter hours of credit attempted in the course. Quality points are awarded according to the following schedule:

A 4 times as many quality points as the credit hours assigned to the course.
A– 3.7 times the number of credit hours.
B+ 3.3 times the number of credit hours.
B 3 times the number of credit hours.
B– 2.7 times the number of credit hours.
C+ 2.3 times the number of credit hours.
C 2 times the number of credit hours.
C– 1.7 times the number of credit hours.
D+ 1.3 times the number of credit hours.
D 1 quality point for each credit hour in the course.
<table>
<thead>
<tr>
<th>Grade</th>
<th>Quality Points Per Credit Hour</th>
<th>Credit Hours Attempted</th>
<th>Quality Points Merited</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>A−</td>
<td>3.7</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>B−</td>
<td>2.7</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>C+</td>
<td>2.3</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>C−</td>
<td>1.7</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>D+</td>
<td>1.3</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>F, FX</td>
<td>0</td>
<td>x</td>
<td>4</td>
</tr>
</tbody>
</table>

GRADE REQUIREMENTS

You must achieve a minimal grade point average of 2.500 to graduate. A grade of D+ or D is unacceptable for graduate credit, and if earned in a required course, the course must be repeated or substituted as directed by the chair of the area of concentration. D+ or D grades remain on the academic record and are calculated into the cumulative grade point average.

PROBATION AND DISMISSAL

A student is subject to Probation as soon as his/her graduate GPA falls below 2.500. The student remains on Probation until four more courses are taken, at which time another evaluation is made. If, at that time, the student has failed to raise his/her GPA to the required level of 2.500 the student may be dismissed for poor scholarship, and prohibited from registering for additional course work.

A student who has been dismissed may, after a period of time, petition for reinstatement. The petition, addressed to dean of the respective graduate division, would provide information that would demonstrate a change in the student’s circumstances to an extent that would support successful completion of the student’s degree program. The dean’s decision, based upon the merits of the petition and the recommendation of the faculty of the student’s department, may, if favorable, stipulate conditions of reinstatement.

PLAGIARISM

Plagiarism is a major form of academic dishonesty involving the presentation of the work of another as one’s own. Plagiarism includes but is not limited to the following:

The direct copying of any source such as written and verbal material, computer files, audio disks, video programs or musical scores, whether published or unpublished, in whole or in part, without proper acknowledgement that it is someone else’s.

Copying of any source in whole or in part with only minor changes in wording or syntax even with acknowledgement.

Submitting as one’s own work a report, examination paper, computer file, lab report or other assignment which has been prepared by someone else. This includes research papers purchased from any other person or agency.

The paraphrasing of another’s work or ideas without proper acknowledgement.
Plagiarism, like other forms of academic dishonesty, is always a serious matter. If an instructor finds that a student has plagiarized, the appropriate penalty is at the instructor's discretion. Actions taken by the instructor do not preclude the college or the University taking further punitive action including dismissal from the University.

For further information about the University's policies on academic integrity please consult the Student Handbook.

REGISTRATION PROCEDURES

Students enrolled at any time during the previous calendar year are eligible to register.

Continuing students register by telephone using DePaul's NROL telephone registration system. Complete instructions will be mailed to all continuing, new and readmitted students.

REGISTRATION IN COURSES IN OTHER COLLEGES OR SCHOOLS

Graduate students may be permitted to register for courses offered in other colleges or schools of the University. This registration requires the written permission of both their advisor and the college in which the course(s) will be taken.

RESIDENCE REGISTRATION

Whether in residence or not, all admitted graduate students, master's and doctoral levels who will use the facilities of the University (library, laboratory, etc.) or who will consult with faculty members regarding theses, dissertations or examinations, must be registered in each quarter.

GRADUATION PROCEDURES

DEGREE REQUIREMENTS

You must have successfully completed all of the general and specific degree requirements as listed in departmental or program sections of the bulletin under which you were admitted. Completed degree requirements can include the submitting of the dissertation or thesis or the research paper, examination scores, and, if necessary, grade changes. Students need to achieve a minimum grade point average of 2.500 to graduate.

GRADUATION WITH DISTINCTION

Conferred upon a student who has maintained a 3.75 grade point average in the degree program, and passes with distinction the final oral, written examination or master's papers with distinction, where applicable.

COMMENCEMENT

Graduation ceremonies are held in June of each year. If you wish to graduate "in absentia," you must request permission in writing from your dean. If you cancel or are ineligible to graduate, you must reapply for the next convocation.

DIPLOMA

Graduation ceremonies are symbolic. Your diploma will be mailed shortly after the convocation.

DEADLINES

Specific dates are established for submission to the graduate office of the completed graduation application and for completion of graduation requirements. Contact the office for specifics.
TUITION AND FEES

DePaul University is a not-for-profit corporation. No student pays the actual cost of his or her education. Tuition and fees are held at their present level through gifts of alumni, foundations, corporations, the Vincentian priests and brothers and friends of the University. All policies are under continual review. Therefore, the Board of Trustees reserves the right to change its charges as conditions require.

Tuition and fees for services and materials are for the academic year 1995-96 are applicable only to graduate students.

GRADUATE STUDENT TUITION, PER QUARTER HOUR

Computer Science, Telecommunications and Information Systems
100-200 series, per hour .. $263.00
300-700 series, per hour .. 334.00

GENERAL FEES

Fees are not refundable

Graduate Application Fee .. $25.00
Readmission Fee ... 5.00
Registration Fee ... 10.00
Delinquency Fee ... 100.00
Deferred Examination Fee
 On Designated Dates .. 10.00
 At Times Not Designated .. 20.00

Doctoral Dissertation Fee ... 75.00
Thesis Binding (Per Copy) .. 10.00
Each Transcript of Credit Fee .. 5.00
Each Returned Check Fee ... *25.00

* If a student gives the University a check that is returned by the bank upon which it is drawn marked “Not Sufficient Funds,” “Payment Stopped,” or “Account Closed,” a $25.00 charge will be assessed for each such occurrence.

COMPUTER FEES

Students enrolling in courses that require computer resources may be assessed one or more computing fees. Revenues from these fees support the maintenance and upgrade of academic computing systems and facilities. Courses requiring these fees are noted in the class schedule. For some courses, instructors may require computer fees that are not shown in the schedule. These fees will be billed to the student’s tuition account, as appropriate.

Student Internet Fee. DePaul students can purchase Internet access accounts for a non-refundable charge of $25.00 per term or $90.00 per year. Only active DePaul students are eligible to participate in this service. Faculty may require students to have Internet access for their courses. Students can sign up for Internet access through Academic Technology Development, 126 Richardson Library and 1300 Lewis Center. The Internet fee will be billed directly to the student’s tuition account.

Student Computing Fee. Student enrolled in courses requiring student accounts on the UNIX or IBM system will be assessed a $25.00 fee per course.

PC Classroom Fee. Students enrolled in courses that meet for five or more sessions in one of the PC classrooms will be assessed a $25.00 fee per course.

MATERIAL FEES

See individual course descriptions for specific material fees.
TUITION PAYMENT POLICY

All tuition and fees are due DePaul University at the time of registration. All charges must be paid in-full by the payment date. The payment dates for each term of the 96-97 academic year are:

Friday, September 6, 1996—Fall Quarter
Friday, December 13, 1996—Winter Quarter
Friday, March 21, 1997—Spring Quarter
Friday, June 13, 1997—Summer I
Friday, July 18, 1997—Summer II

Tuition charges for any course registrations after the payment date must be paid in-full at the time of registration.

Tuition is due by the payment date whether or not a bill has been received. If you have not received a bill, you may contact the Student Financial Services Office at (312) 362-8379 or (312) 362-6628 any time during business hours to determine the amount you are required to pay.

Payment must be received in the Cashier's Office or one of its depositories by the payment dates as indicated. Students may pay by check, money order or credit card (Visa, Master Card or Discover). Payments may be made to the Cashier's Office by mail or in person, or if paying by credit card, by phone (312) 362-6744. (Please note: If paying by mail, the University does not accept responsibility for delays in the U.S. Postal Service.)

Students whose accounts show a balance due after the date payment is required will be assessed a $100 delinquency fee and prohibited from future registration and receiving transcripts. Any requests appealing assessment of delinquency fees must be submitted in writing to the Student Accounts department.

BILLING

Bills will be printed and mailed when a registration is recorded. Payment must be made by the published payment date to avoid delinquency-fee assessment regardless of whether or not a bill is received. If a bill is not received, students may contact the Accounts Receivable Office at (312) 362-8379 for information relative to charges due. Revised bills will be issued for enrollment changes made after the initial registration.

For registrations and enrollment changes made after the payment date for a term, payment is due immediately. Although bills will be issued, to make timely payment students should contact Accounts Receivable for information regarding tuition charges.

If a student loses or misplaces his or her bill and needs a copy of the tuition account for records or for employer reimbursement, a printed copy of the account may be obtained from the Student Accounts department.

WITHDRAWAL

Students who must withdraw either from a course or from the University may do so in person at their home college, by letter addressed to the college, or by using the University's telephone registration system when appropriate. Withdrawals processed via NROL or in person are effective the day on which they are made. Withdrawals processed as a result of a letter are effective at the discretion of the college office. Simply ceasing to attend, or notifying the faculty, or nonpayment of tuition does not constitute a withdrawal of record and will result in academic as well as financial penalty.

Upon processing of the withdrawal request, the tuition charge for courses during the regular academic year will be reduced according to the following schedule, where the effective date is:

Until ten business days after the beginning of the term ..100%
After that date ..0%
For courses of four weeks or less but more than two weeks duration no reduction will be granted after the first week of the term. For workshops or courses of two weeks or less duration, no refunds will be granted after the workshop or sessions begin.

For the Summer sessions, consult the schedule of tuition, fees and refunds listed in the Summer classes booklet.

Fees are not refundable.

NOTE: Students receiving financial aid are advised to contact a Financial Counselor to discuss the consequences of a withdrawal effecting academic progress and eligibility at DePaul University or any other school to which they may transfer.

REFUNDS

Should an account result in a credit balance which is refundable to the student, the student has the option of leaving the credit on the account to be applied toward future term expenses, or may apply for a refund through the Cashier’s Office.

Application for a refund may be made to the Cashier’s Office by a telephone request or in person. Refund checks will be made payable to the student and mailed to the address the student has on file with the University.

Loan checks, such as the Perkins and FFELP loans, must first be applied to the balance due on the student’s account. If a credit balance is created after application of the loan check, the student may apply for a refund of the credit balance.

Please note: Financial aid awards (grants and scholarships) cannot be considered for refunds until the course add/refundable drop period is closed, that is, after the second full week of the term.

GENERAL NOTES

1. Registration cannot be accepted from a student with an unpaid balance from a prior term. Registration attempted under these circumstances is subject to cancellation.

2. Tuition and fees for courses audited are charged at the regular tuition rates. These must be paid at the time of registration and are not refundable.

3. The Guaranteed Loan Program is administered by the Loan Commission and the student’s bank. DePaul University assists the student in applying for these funds and does not delay the application process. The process may take as long as twelve weeks. Because the loan is a personal matter between the student and bank, the University does not recognize payment until the loan check is endorsed by the student and applied to his or her account.

DELINQUENCY FEES APPLY.

4. If a student gives the University a check that is returned by the bank upon which it was drawn, marked “Not Sufficient Funds,” “Payment Stopped,” “Refer to Maker,” or “Account Closed,” a $25.00 charge will be assessed for each such occurrence. The University reserves the right to refuse acceptance of a personal check without prior notice.

5. Any foreign checks must be made payable in United States dollars or they will not be accepted by the University.

6. A student adding a class will receive a revised confirmation.

FINANCIAL ASSISTANCE

Several types of financial aid are available to graduate students through programs administered by the University graduate school departments. These include DePaul University graduate assistantships as well as special awards funded by foundations and corporations.

In addition, the DePaul Office of Student Financial Services administers a variety of loan programs for which graduate students are eligible to apply.
LOANS

DIRECT LOAN PROGRAM. Federal Direct Stafford Loans (Direct Loans) are a new way for students to borrow money from the federal government to pay for university expenses. Under this program, the U.S. Department of Education makes loans, through schools, directly to students.

There are two types of Direct Loans—subsidized and unsubsidized. Eligibility for subsidized Direct Loans is based on federal methodology. Repayment is deferred until six months after you graduate or cease to be enrolled at least half-time, and the interest is paid by the government while you are enrolled in school. Eligibility for unsubsidized Direct Loans is not based on financial need. You may borrow the cost of education minus all other financial aid you receive, up to the Direct Loan maximum. However, the interest must be either paid by you while you are enrolled, or be accrued and capitalized to the principal. Repayment of the principal is deferred until after you graduate or cease to be enrolled at least half-time.

The interest rate on the Direct Loan is variable and presently is 7.43 percent. It is adjusted annually on July 1. However, the interest rate cannot exceed 8.25 percent. In addition, there is an origination fee of 4 percent charged to the borrower and deducted from the loan proceeds before disbursement.

Direct Loan maximums vary according to academic level and dependency status.

GRADUATE STUDENTS

<table>
<thead>
<tr>
<th>Subsidized Direct Loan Maximum</th>
<th>Total Direct Loan Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8,500</td>
<td>$18,500</td>
</tr>
</tbody>
</table>

Graduate students may borrow the subsidized Direct Loan up to the maximum indicated above, and may supplement this amount with the unsubsidized Direct Loan. The total combined subsidized and unsubsidized Direct Loan may not exceed $18,500.

ALTERNATIVE FINANCING

DEPAUL UNIVERSITY

The DePaul University Payment Plan (DePUPP) is a budget payment option which allows students to pay their tuition, fees, and room and board in monthly installments over a nine month period. This service is available to all DePaul University students. It is not a loan program, there are no interest or finance charges, or credit or financial-needs requirements.

The student determines the budget amount for the plan. DePUPP requires a minimum budget amount of $750.00. The budgeted amount is the student's total estimated annual charges (tuition, fees, room and board) less the total estimated financial aid awards (annual scholarships, grants, loans). Books and personal expenses are not covered by this budget. The total amount budgeted under the plan will be divided equally over the number of months in the plan at the time you apply.

The plan period is from July to March with payments due the 15th of each month. The student may pay by check, money order, credit card (VISA, Master Card or Discover) or Electronic Funds Transfer.

Monthly billing statements will be sent to the student in advance of each payment due date. The statement will reflect charges and any payments or credits received since the last bill, the payment plan amount due by the 15th, and the current outstanding balance.

Students are urged to apply early. To participate in the nine month program, applications must be received by the Accounts Receivable Office no later than June 1. Applications made after this date must be accompanied by any past due payments to catch up to the regular schedule.
Applications received after September 1st but prior to October 1st will be processed for Winter/Spring term registrations only. Payments for the budgeted amount will be over a six-month period with the first payment due October 15th, and the last payment due March 15th. Students who wish to participate in DePUPP should complete and submit a plan application to the Accounts Receivable Office with the application fee by the appropriate due date. An annual non-refundable fee of $30.00 is required for each application.

The application is valid for one academic year only. For each year a student wishes to participate in this program a new application must be submitted.

More detailed information regarding this program and plan applications are available from the Students Accounts Department and the Financial Aid Office.

Any questions regarding DePUPP should be directed to the Accounts Receivable Office (312) 362-8379, or you may write to: Accounts Receivable Office, DePaul University, 1 E. Jackson Blvd., Chicago, IL 60604.

The DePaul Payment Plan for Employer Reimbursement is a payment option for students who receive tuition reimbursement from their employers. It is administered through the Student Accounts office of Student Financial Services. The payment plan is designed to view coverage by an employer tuition reimbursement program as pending payment. Since employer reimbursement is generally issued at the end of a term, this payment plan allows the students covered by such an employer reimbursement plan to receive an extended payment due date for their tuition charges. Regardless of when the employer reimburses the student, the tuition due dates are not negotiable. Bills and grades will be issued to the students only and not to the employers. It is the responsibility of the student to provide their employers with copies of any documents their employer may require.

Eligibility Requirements. Students must submit the application and related fee by the application deadline. If there is a doubtful account history, past due balance, or insufficient employer documentation, the student will not be accepted into the program. If at any time the student falls delinquent in payment, the payment plan privilege is no longer available.

Eligible Courses. To be eligible to participate in this program, students must be enrolled in the traditional quarterly courses which are 10 weeks in duration (5-week Summer courses). Special seminars, extended courses, workshops, courses which require prepayment, audits and zero credit courses are not covered in this program.

Financial Aid. Students cannot apply for this program if they have also applied for financial aid. This program is designed to assist students who do not receive financial aid. There are no exceptions to this policy.

Payment. Regardless of when the employer reimburses the student, it is the student’s responsibility to pay the balance in full on or before the tuition due date. Students who experience this delay from their employers typically pay tuition using a credit card. Students are responsible for paying their tuition accounts in full by the date whether they have completed the work for their courses whether or not they have received reimbursement from their employer. Tuition due dates are not negotiable and delinquent fees will apply to students who do not meet the tuition due date deadlines. Failure to meet the application agreement will jeopardize future participation in the program and may prevent future enrollment.

How to apply. Applications are available in the Student Financial Services Offices of Student Accounts and Student Aid; the college offices and suburban campuses. Submit the completed application and fee to the Payment Center by the required deadline. You will be notified only if your application has been denied. Do not return the application and fee to the college—this will delay processing and acceptance into the program.
FEES/APPLICATIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Fee</th>
<th>Application Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall, Winter and Spring terms</td>
<td>$100.00</td>
<td>One time application for 3 quarters</td>
</tr>
<tr>
<td>Fall term only</td>
<td>40.00</td>
<td>Quarterly application</td>
</tr>
<tr>
<td>Winter term only</td>
<td>40.00</td>
<td>Quarterly application</td>
</tr>
<tr>
<td>Spring term only</td>
<td>40.00</td>
<td>Quarterly application</td>
</tr>
<tr>
<td>Summer Session I term</td>
<td>40.00</td>
<td>Quarterly application</td>
</tr>
<tr>
<td>Summer Session II term</td>
<td>40.00</td>
<td>Quarterly application</td>
</tr>
</tbody>
</table>

All fees are non-refundable.

<table>
<thead>
<tr>
<th>Term</th>
<th>Application Deadline Date</th>
<th>Extended Payment Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall, Winter, Spring (one time application)</td>
<td>Friday, August 30, 1996</td>
<td>January 17, 1997</td>
</tr>
<tr>
<td>Fall quarter</td>
<td>Friday, August 30, 1996</td>
<td>January 17, 1997</td>
</tr>
<tr>
<td>Winter quarter</td>
<td>Friday, December 6, 1996</td>
<td>April 18, 1997</td>
</tr>
<tr>
<td>Spring quarter</td>
<td>Friday, March 14, 1997</td>
<td>July 11, 1997</td>
</tr>
<tr>
<td>Summer Session I</td>
<td>Friday, June 6, 1997</td>
<td>September 12, 1997</td>
</tr>
<tr>
<td>Summer Session II</td>
<td>Friday, July 11, 1997</td>
<td>October 10, 1997</td>
</tr>
</tbody>
</table>

If mailing the applications, remember to include the fee. The University does not accept responsibility for delays in the U.S. Postal System.

For information about the Payment Plan for Employer Reimbursement, call the Student Accounts office (312) 362-6628.

PRIVATE AGENCIES

Other sources of loan funding are made available through private agencies for those who feel their needs have not been met sufficiently or those who are determined to be ineligible for other types of financial aid.

There are long term loan programs available such as The Educational Credit Corporation (ECC), EXCEL, and Option IV.

For more information about these and other alternative financing programs, contact the Office of Financial Aid.

PART-TIME EMPLOYMENT

Student Service employment takes the form of on-campus work with the full salary paid by DePaul. Any student wishing to work on campus may be eligible under this program as long as they are not receiving other need-based aid that would be affected by such earnings. If you would like to work on campus, check with the Human Resource Office to see if you are eligible.

HOW TO APPLY

For more information about financial aid programs, contact DePaul University's Office of Student Financial Services, 1 E. Jackson Blvd., Chicago, IL 60604. Telephone (312) 362-8091.
ASSISTANTSHIPS

The University provides a number of teaching, research and administrative assistantships to applicants accepted as degree-seeking, fully-admitted graduate students. Application should be made to the School of Computer Science, Telecommunications and Information Systems.

New applicants must have all their credentials (completed application form, admission fee, duplicate copies of transcripts and letters of recommendation) on file in the appropriate graduate office no later than the February 15 prior to Autumn quarter admission.

Announcement of Graduate Assistantships is generally made by June 1. Assistantships must be accepted or declined, in writing, by July 1.

Recipients will be assigned by their program directors or departments to activities appropriate for a teaching, research or administrative assistant.
Academic Calendar 1996-1997

Autumn Quarter
- **September 2**: Monday. Labor Day.
- **September 6**: Friday. Autumn tuition payment date.
- **September 11**: Wednesday. Autumn quarter evening classes begin.
- **October 9-15**: Wednesday—Tuesday. Mid-term week (optional).
- **November 1**: Friday. Last day to withdraw from classes.
- **November 19**: Tuesday. Last day of Autumn quarter evening classes.
- **November 20-26**: Wednesday—Tuesday. Final Examinations for Autumn quarter evening classes.
- **November 27**: Wednesday. End of Autumn quarter.
- **November 27-30**: Wednesday evening—Sunday. Thanksgiving holiday.
- **December 13**: Friday. Winter tuition payment date.

Winter Quarter
- **January 4**: Saturday. Winter quarter Saturday classes begin.
- **January 6**: Monday. Winter quarter evening classes begin.
- **February 1-7**: Saturday—Friday. Mid-term week (optional).
- **February 21**: Friday. Last day to withdraw from classes.
- **March 14**: Tuesday. Last day of Winter quarter evening classes.
- **March 17-21**: Monday—Friday. Final Examinations for Winter quarter classes.
- **March 21**: Friday. End of Winter quarter. Spring tuition payment date.

Spring Quarter
- **March 31**: Monday. Spring quarter classes begin.
- **April 28—May 3**: Monday—Saturday. Mid-term week (optional).
- **May 16**: Friday. Last day to withdraw from class.
- **May 26**: Monday. Memorial Day. Holiday—no classes.
- **June 6**: Friday. Last day of Spring quarter classes.
- **June 7-13**: Saturday—Friday. Final Examinations for Spring quarter classes.
- **June 13**: Friday. Spring quarter ends. Summer I tuition payment date.
- **June 14-15**: Saturday—Sunday. Commencement.

Summer Sessions
- **June 16**: Monday. First Summer Session begins.
- **July 4**: Friday. Independence Day. Holiday—No classes.
- **July 17**: Thursday. First Summer Session ends.
- **July 18**: Friday. Summer II tuition payment date.
- **July 21**: Monday. Second Summer Session begins.
- **August 21**: Thursday. Second Summer Session ends.
| A | Artificial Intelligence 12 |
| C | Computer Science, Telecommunications 27 |
| | Computer Science, |
| | Master of Science Admission 10 |
| | Advanced Placement 17 |
| | Concentrations 12 |
| | Distinguished Scholars Program 17 |
| | Elective Restrictions 19 |
| | Grade Requirements 19 |
| | Prerequisites 11 |
| Concentrations | Artificial Intelligence 12 |
| | Data Analysis 14 |
| | Database Systems 14 |
| | Data Communications 15 |
| | Personalized Concentration 17 |
| | Project Management 26 |
| Software Development | Standard Computer Science 12, 31 |
| | Standard Telecommunications 31 |
| | Visual Computing 15 |
| Course Descriptions | 44 |
| D | Data Analysis 13 |
| | Database 14 |
| | Data Communications 15 |
| | Distinguished Scholars Program 17 |
| Doctoral Concentrations | Artificial Intelligence 38 |
| | Communications 38 |
| | Computer Information Systems 39 |
| | Data Analysis 39 |
| | Database Systems 39 |
| | Operating Systems 39 |
| | Programming Languages and Environment 40 |
| | Software Engineering 40 |
| | Software Management 40 |
| | Theoretical Computer Science 39 |
| | Visual Computing 39 |
| | Doctoral Program, |
| | Admission 37, 38 |
| | Concentrations 38 |
| | Dissertation 41 |
| | Time Limitations 43 |
| F | Facilities 9 |
| | Faculty 7 |
| H | Human-Computer Interaction, |
| | Master of Science Admission 20 |
| | Degree Requirements 20 |
| | Grade Requirements 21 |
| | Prerequisites 20 |
| I | Information Systems, |
| | Master of Science Admission 22 |
| | Elective Restrictions 24 |
| | Grade Requirements 24 |
| | Prerequisites 22 |
| M | Management Information Systems, |
| | Master of Science Admission 33 |
| | Prerequisites 33 |
| | Master's Programs |
| | Computer Science 10 |
| | Human-Computer Interaction 20 |
| | Information Systems 22 |
| | Management Information Systems 33 |
| | Software Engineering 24 |
| | Telecommunication Systems 29 |
| P | Project Management 26 |
| S | Software Engineering, |
| | Master of Science Admission 25 |
| | Elective Restriction 28 |
| | Grade Requirements 28 |
| | Prerequisites 25 |
INDEX

Software Management Program 27
Standard Computer Science 12
Standard Telecommunications 31

Telecommunication Systems,
 Master of Science Admission 29
 Concentrations 31
 Elective Restrictions 32
 Grade Requirement 32
 Prerequisites 30

Visual Computing 15

GRADUATE HANDBOOK 67-89

Academic Counseling 79
Accreditation 71
Administration, General 73
Alternative Financing 86
Assistantships 88

Billing 84
Board of Trustees 73

Calendar 90
Campus Locations 69
Career Planning 71
Commencement 82
Computer Facilities 70
Course Load 79
Course Numbering 79
Credits 79

DePaul Payment Plan 87
DePupp Plan 86
Dismissal 81

Educational Records, Access to 79
Fees 83
Financial Assistance 85
Grades 80
Graduate Courses 79
Graduation Procedures 82
Honor Societies 72
Housing 71
Jobs, Part Time 88
Libraries 69
Loans 86
Payment 84
Plagiarism 81
Probation 81
Registration 82
Regulations, Academic 79
Refunds 85
Residence Registration 82
Student Responsibility 79
Tuition and Fees 83
Undergraduate Courses 79
Withdrawal 84
DePaul, a Catholic university, takes its name from St. Vincent dePaul. The religious community founded by Vincent, commonly known as "Vincentians", opened the university and endowed it with a distinctive spirit, to foster in higher education a deep respect for the God-given dignity of all persons, especially the materially, culturally, and spiritually deprived; to instill in educated persons a dedication to the service of others. In each succeeding generation the women and men of DePaul have pursued learning in this spirit of Vincent dePaul.